首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.  相似文献   

2.
The objective of this paper is to present an overview of recent advances in computational aeroacoustics (CAA). During the last decade, CAA has developed quite independent of computational fluid dynamics (CFD). There are computational issues that are unique to CAA and are, generally, not considered in CFD. In this paper, these issues are discussed and explained. In CAA, there is a great need to resolve high-frequency short waves with the minimum number of mesh points per wavelength. There is also a special need to minimize numerical dispersion and dissipation associated with wave propagation computation. All these have led to the development of large-stencil high-resolution schemes for CAA. A careful examination of dispersion and dissipation errors due to spatial and temporal discretization is provided. These errors are quantified and analyzed in wave number space through the use of Fourier-Laplace transforms. At this time, some of the original computational challenges to CAA have been resolved satisfactorily. A discussion of how some of these computational issues are resolved is presented. Several important CAA applications with interesting or unusual computational innovations are highlighted. Finally, a few of the most pressing outstanding computational challenges to CAA are elaborated.  相似文献   

3.
A hybrid computational fluid dynamics (CFD) and computational aeroacoustics (CAA) method is used to compute the acoustic field of turbulent hot jets at a Reynolds number Re=316,000 and a Mach number M=0.12. The flow field computations are performed by highly resolved large-eddy simulations (LES), from which sound source terms are extracted to compute the acoustic field by solving the acoustic perturbation equations (APE). Two jets are considered to analyze the impact of exit conditions on the resulting jet sound field. First, a jet emanating from a fully resolved non-generic nozzle is simulated by solving the discrete conservation equations. This computation of the jet flow is denoted free-exit-flow (FEF) formulation. For the second computation, the nozzle geometry is not included in the computational domain. Time averaged exit conditions, i.e. velocity and density profiles of the first formulation, plus a jet forcing in form of vortex rings are imposed at the inlet of the second jet configuration. This formulation is denoted imposed-exit-flow (IEF) formulation. The free-exit-flow case shows up to 50% higher turbulent kinetic energy than the imposed-exit-flow case in the jet near field, which drastically impacts noise generation. The FEF and IEF configurations reveal quite a different qualitative behavior of the sound spectra, especially in the sideline direction where the entropy source term dominates sound generation. This difference occurs since the noise sources generated by density and pressure fluctuations are not perfectly modeled by the vortex ring forcing method in the IEF solution. However, the total overall sound pressure level shows the same qualitative behavior for the FEF and IEF formulations. Towards the downstream direction, the sound spectra of the FEF and IEF solutions converge.  相似文献   

4.
为了研究膛口装置对膛口噪声气动特性的影响,对带膛口制退器的某小口径武器的膛口射流噪声进行了数值模拟和实验研究。采用计算流体力学CFD (computational fluid dynamics)-计算气动声学CAA (computational aeroacoustics)耦合算法对膛口噪声进行数值模拟,即对膛口流场进行瞬态CFD模拟,获取流场数据,然后利用所得到的结果采用声学方程模拟声源信息求解声场。基于数值模拟结果,分析了膛口流场变化及噪声的指向性分布,并与实验结果进行了对比。研究表明:膛口制退器的安装改变了膛口流场结构,影响了膛口射流噪声的指向性分布。计算结果与实验结果的误差小于9%,验证了该计算方法的可行性。研究结果可为膛口射流噪声的预测及膛口制退器的设计提供一定的参考。  相似文献   

5.
This paper discusses the development of computational aeroacoustics (CAA) tools for airframe noise analysis and prediction. We review recent progress in this topic, but emphasize our vision for the future development of such tools. Our intention is for this vision to drive future CAA research in directions that will accelerate widespread use of CAA for airframe noise applications. We discuss the needs for accuracy, efficiency, and easy interface with other design tools and illustrate how CAA tools may help future aircraft design. We explain what appears to be achievable in a 20-year time frame, and what goals will probably take longer.

Important barrier issues include the effects of numerical dispersion and dissipation, the treatment of highly curved, irregular boundary surfaces, and grid generation. Beyond these largely numerical issues, we discuss the role of physics-based modeling, including turbulence modeling in unsteady flow computations and the importance of developing sophisticated techniques for analyzing results of computations. Numerical simulations combined with the acoustic analogy methodology to predict noise are also reviewed. Finally, we discuss how to use recent advances in measurement techniques for CAA tool validation, which is an integral part of future development.  相似文献   

6.
A three-dimensional (3D) hybrid LES-acoustic analogy method for computational aeroacoustics (CAA) is presented for the prediction of open-cavity noise. The method uses large-eddy simulation (LES) to compute the acoustic source while the Ffowcs Williams-Hawkings (FW-H) acoustic analogy is employed for the prediction of the far-field sound. As a comparison, a two-dimensional (2D) FW-H analogy is also included. The hybrid method has been assessed in an open-cavity flow at a Mach number of 0.85 and a Reynolds number of Re=1.36×106, where some experimental data are available for comparison. The study has identified some important technical issues in the application of the FW-H acoustic analogy to cavity noise prediction and CAA in general, including the proper selection of the integration period and the modes of sound sources in the frequency domain. The different nature of 2D and 3D wave propagation is also highlighted, which calls for a matching acoustic solver for each problem. The developed hybrid method has shown promise to be a feasible, accurate and computationally affordable approach for CAA.  相似文献   

7.
8.
Vortices have been described as the “sinews of turbulence”. They are also, increasingly, the computational engines driving numerical simulations of turbulence. In this paper, I review some recent advances in vortex-based numerical methods for simulating high Reynolds number turbulent flows. I focus on coherent vortex simulation, where nonlinear wavelet filtering is used to identify and track the few high energy multiscale vortices that dominate the flow dynamics. This filtering drastically reduces the computational complexity for high Reynolds number simulations, e.g. by a factor of 1000 for fluid–structure interaction calculations (Kevlahan and Vasilyevvon in SIAM J Sci Comput 26(6):1894–1915, 2005). It also has the advantage of decomposing the flow into two physically important components: coherent vortices and background noise. In addition to its computational efficiency, this decomposition provides a way of directly estimating how space and space–time intermittency scales with Reynolds number, Re α . Comparing α to its non-intermittent values gives a realistic Reynolds number upper bound for adaptive direct numerical simulation of turbulent flows. This direct measure of intermittency also guides the development of new mathematical theories for the structure of high Reynolds number turbulence.  相似文献   

9.
10.
A large variety of hybrid computational aeroacoustics (CAA) approaches exist differing from each other in the way the source region is modeled, in the way the equations are used to compute the propagation of acoustic waves in a non-quiescent medium, and in the way the coupling between source and acoustic propagation regions is made. This paper makes a comparison between some commonly used numerical methods for aeroacoustic applications. The aerodynamically generated tonal noise by a flow over a 2D rectangular cavity is investigated. Two different cavities are studied. In the first cavity (L/D=4, M=0.5), the sound field is dominated by the cavity wake mode and its higher harmonics, originating from a periodical vortex shedding at the cavity leading edge. In the second cavity (L/D=2, M=0.6), shear-layer modes, due to flow-acoustic interaction phenomena, generate the major components in the noise spectrum. Source domain modeling is carried out using a second-order finite-volume large eddy simulation. Propagation equations, taking into account convection and refraction effects, are solved using high-order finite-difference schemes for the linearized Euler equations and the acoustic perturbation equations. Both schemes are compared with each other for various coupling methods between source region and acoustic region. Conventional acoustic analogies and Kirchhoff methods are rewritten for the various propagation equations and used to obtain near-field acoustic results. The accuracy of the various coupling methods in identifying the noise-generating mechanisms is evaluated. In this way, this paper provides more insight into the practical use of various hybrid CAA techniques to predict the aerodynamically generated sound field by a flow over rectangular cavities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
关于气动声学数值计算的方法与进展   总被引:1,自引:0,他引:1  
气动声学数值计算是近年才出现的研究领域。本文介绍了气动声学数值计算的方法和有关的问题、边界条件的处理以及计算非线性声波的数值方法和进展。讨论了计算气动声学(CAA)的特性及其与计算流体力学(CFD)的差异,指出气动声学数值方法的关键是建立能保持色散关系的差分方程和正确处理无反射边界条件。对于非线性声波传播的问题,为了得到正确的解,应注意提高差分格式对短波的分辨能力,同时发展能抑制“伪”振荡(短波)而对长波基本不起作用的数值方法。  相似文献   

12.
This paper reports on the simulation of the near-nozzle region of an isothermal Mach 0.6 jet at a Reynolds number of 100,000 exhausting from a round nozzle geometry. The flow inside the nozzle and the free jet outside the nozzle are computed simultaneously by a high-order accurate, multi-block, large eddy simulation (LES) code with overset grid capability. The total number of grid points at which the governing equations are solved is about 50 million. The main emphasis of the simulation is to capture the high frequency noise generation that takes place in the shear layers of the jet within the first few diameters downstream of the nozzle exit. Although we have attempted to generate fully turbulent boundary layers inside the nozzle by means of a special turbulent inflow generation procedure, an analysis of the simulation results supports the fact that the state of the nozzle exit boundary layer should be characterized as transitional rather than fully turbulent. This is believed to be most likely due to imperfections in the inflow generation method. Details of the computational methodology are presented together with an analysis of the simulation results. A comparison of the far field noise spectrum in the sideline direction with experimental data at similar flow conditions is also carried out. Additional noise generation due to vortex pairing in the region immediately downstream of the nozzle exit is also observed. In a second simulation, the effect of the nozzle exit boundary layer thickness on the vortex pairing Strouhal frequency (based on nozzle diameter) and its harmonics is demonstrated. The limitations and deficiencies of the present study are identified and discussed. We hope that the lessons learned in this study will help guide future research activities towards resolving the pending issues identified in this work.
Presented as AIAA Paper 2006-2499 at 12th AIAA/CEAS Aeroacoustics Conference, 8–10 May 2006, Cambridge, MA, USA.  相似文献   

13.
Presently, improving the accuracy and reducing computational costs are still two major CFD objectives often considered incompatible. This paper proposes to solve this dilemma by developing an adaptive mesh refinement method in order to integrate the 3D Euler and Navier–Stokes equations on structured meshes, where a local multigrid method is used to accelerate convergence for steady compressible flows. The time integration method is a LU‐SGS method (AIAA J 1988; 26: 1025–1026) associated with a spatial Jameson‐type scheme (Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes. AIAA Paper, 81‐1259, 1981). Computations of turbulent flows are handled by the standard k–ω model of Wilcox (AIAA J 1994; 32: 247–255). A coarse grid correction, based on composite residuals, has been devised in order to enforce the coupling between the different grid levels and to accelerate the convergence. The efficiency of the method is evaluated on standard 2D and 3D aerodynamic configurations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A review of unsteady computational boundary conditions for computational aeroacoustics (CAA) problems is presented. This review is meant to serve as a general overview of previous work on solid wall, radiation and outflow boundary conditions that have been proposed and used in CAA calculations. Both the physical nature of the boundary condition problem as well as the numerical considerations affecting their implementation are discussed.  相似文献   

15.
By means of computational fluid dynamics (CFD) this study examines cavitation effects behind obstacles and within an automotive fuel jet pump. Especially with regard to gasoline such effects are serious issues for applications of jet pumps in automotive fuel systems. The cavitation phenomena are captured by a model based on a void region approach within the volume-of-fluid method (VOF) including the k--model of turbulence. A first-order and a second-order scheme are compared, and the potential of the numerical method is evaluated by considering benchmark cases.  相似文献   

16.
High order finite difference approximations with improved accuracy and stability properties have been developed for computational aeroacoustics (CAA). One of our new difference operators corresponds to Tam and Webb's DRP scheme in the interior, but is modified near the boundaries to be strictly stable. A unified formulation of the nonlinear and linearized Euler equations is used, which can be extended to the Navier–Stokes equations. The approach has been verified for 1D, 2D and axisymmetric test problems. We have simulated the sound propagation from a rocket launch before lift-off. To cite this article: B. Müller, S. Johansson, C. R. Mecanique 333 (2005).  相似文献   

17.
A mini-symposium on computational modeling of fluid–structure interactions and other multiphysics in physiological flows was held at the 11th World Congress on Computational Mechanics in July 2014 in Barcelona, Spain. This special issue of Theoretical and Computational Fluid Dynamics contains papers from among the participants of the mini-symposium. The present paper provides an overview of the mini-symposium and the special issue.  相似文献   

18.
ABSTRACT

For the one-stage third-order gas-kinetic scheme (GKS), successful applications have been achieved for the three-dimensional compressible flows [Pan, L., K. Xu, Q. Li, and J. Li. 2016. “An Efficient and Accurate Two-stage Fourth-order Gas-kinetic Scheme for the Navier-Stokes Equations.” Journal of Computational Physics 326: 197–221]. The high-order accuracy of the scheme is obtained by integrating a multidimensional time-accurate gas distribution function over the cell interface within a time step without using Gaussian quadrature points and Runge-Kutta time-stepping technique. However, to the further increase of the order of the scheme, such as the fourth-order one, the one step formulation becomes very complicated for the multidimensional flow. Recently, a two-stage fourth-order GKS with high efficiency has been constructed for two-dimensional inviscid and viscous flow computations ([Li, J., and Z. Du. 2016. “A Two-stage Fourth Order Time-accurate Discretization for Lax-Wendroff Type Flow Solvers I. Hyperbolic Conservation Laws.” SIAM Journal on Scientific Computing 38: 3046–3069]; Pan et al. 2016), and the scheme uses the time accurate flux function and its time derivatives. In this paper, a fourth-order GKS is developed for the three-dimensional flows under the two-stage framework. Based on the three-dimensional WENO reconstruction and flux evaluation at Gaussian quadrature points on a cell interface, the high-order accuracy in space is achieved first. Then, the two-stage time stepping method provides the high accuracy in time. In comparison with the formal third-order GKS [Pan, L., and K. Xu. 2015. “A Third-order Gas-kinetic Scheme for Three-dimensional Inviscid and Viscous Flow Computations.” Computers & Fluids 119: 250–260], the current fourth-order method not only improves the accuracy of the scheme, but also reduces the complexity of the gas-kinetic flux solver greatly. More importantly, the fourth-order GKS has the same robustness as the second-order shock capturing scheme [Xu, K. 2001. “A Gas-kinetic BGK Scheme for the Navier-Stokes Equations and its Connection with Artificial Dissipation and Godunov Method.” Journal of Computational Physics 171: 289–335]. Numerical results validate the outstanding reliability and applicability of the scheme for three-dimensional flows, such as the cases related to turbulent simulations.  相似文献   

19.
Pennati  G.  Migliavacca  F.  Laganà  K.  Dubini  G. 《Meccanica》2002,37(4-5):453-463
The modified Blalock-Taussig shunt is a connection created between the systemic and pulmonary arterial circulations to improve pulmonary perfusion in children with congenital heart diseases. Survival of these patients is critically dependent on blood flow distribution between the pulmonary and systemic circulations, that in turn depends upon the fluid dynamic behaviour of the shunt. Computational fluid dynamics, structural analyses as well as in vitro experiments were carried out to derive a quantitative relationship between the shunt flow and the corresponding pressure drop. While computational fluid dynamics simulations were based on the assumption of rigid wall for the shunt and the arteries, proper distensible conduits were used in the in vitro study and the structural analysis of the anastomosis deformation. The results indicated that the internal pressure combined with wall distensibility modifies the cross-sectional area of the distal anastomosis (between the shunt and the pulmonary artery). This fact affects the pressure drop across the shunt, especially at low pressures. Based on the results from the computational analyses and the in vitro experiments, a relationship between pressure drop and flow in the shunt was obtained, which matches data from clinical measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号