首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a new lattice Boltzmann model for the compressible Euler equations. The model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. In order to obtain second‐order accuracy, we employ the ghost field distribution functions to remove the non‐physical viscous parts. We also use the conditions of the higher moment of the ghost field equilibrium distribution functions to obtain the equilibrium distribution functions. In the numerical examples, we compare the numerical results of this scheme with those obtained by other lattice Boltzmann models for the compressible Euler equations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we propose a new lattice Boltzmann model for the compressible Navier–Stokes equations. The new model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. As the 25‐bit model, we obtained the equilibrium distribution functions and the compressible Navier–Stokes equations with the second accuracy of the truncation errors. The numerical examples show that the model can be used to simulate the shock waves, contact discontinuities and supersonic flows around circular cylinder. The numerical results are compared with those obtained by traditional method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattie Boltzmann model, and the result agrees well with analytical solution.  相似文献   

4.
基于格子 Bhatnagar-Gross-Krook模型的地震压力波模拟   总被引:1,自引:0,他引:1  
闫广武  董银峰 《力学学报》2005,37(2):238-243
给出一种新的用于模拟地震压力波的格子Boltzmann模型. 通过使 用Chapman-Enskog展开和多重尺度技术,得到了一系列的格子Boltzmann方程和时间 尺度$t_0$上守恒律,给出了满足地震压力波方程所要求的高阶矩以及简单的平衡态分布 函数表达式. 数值结果表明这种方法可以用来模拟地震压力波.  相似文献   

5.
A lattice Boltzmann model with higher‐order accuracy for the wave motion is proposed. The new model is based on the technique of the higher‐order moment of equilibrium distribution functions and a series of lattice Boltzmann equations in different time scales. The forms of moments are derived from the binary wave equation by designing the higher‐order dissipation and dispersion terms. The numerical results agree well with classical ones. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A lattice Boltzmann model for the fractional sub‐diffusion equation is presented. By using the Chapman–Enskog expansion and the multiscale time expansion, several higher‐order moments of equilibrium distribution functions and a series of partial differential equations in different time scales are obtained. Furthermore, the modified partial differential equation of the fractional sub‐diffusion equation with the second‐order truncation error is obtained. In the numerical simulations, comparisons between numerical results of the lattice Boltzmann models and exact solutions are given. The numerical results agree well with the classical ones. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the newly developed lattice Boltzmann flux solver (LBFS) is developed into a version in the rotating frame of reference for simulation of turbomachinery flows. LBFS is a finite volume solver for the solution of macroscopic governing differential equations. Unlike conventional upwind or Godunov‐type flux solvers which are constructed by considering the mathematical properties of Euler equations, it evaluates numerical fluxes at the cell interface by reconstructing local solution of lattice Boltzmann equation (LBE). In other words, the numerical fluxes are physically determined rather than by some mathematical approximation. The LBE is herein expressed in a relative frame of reference in order to correctly recover the macroscopic equations, which is also the basis of LBFS. To solve the LBE, an appropriate lattice Boltzmann model needs to be established in advance. This includes both the determinations of the discrete velocity model and its associated equilibrium distribution functions. Particularly, a simple and effective D1Q4 model is adopted, and the equilibrium distribution functions could be efficiently obtained by using the direct method. The present LBFS is validated by several inviscid and viscous test cases. The numerical results demonstrate that it could be well applied to typical and complex turbomachinery flows with favorable accuracy. It is also shown that LBFS has a delicate dissipation mechanism and is thus free of some artificial fixes, which are often needed in conventional schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we propose a new Lagrangian lattice Boltzmann method (LBM) for simulating the compressible flows. The new scheme simulates fluid flows based on the displacement distribution functions. The compressible flows, such as shock waves and contact discontinuities are modelled by using Lagrangian LBM. In this model, we select the element in the Lagrangian coordinate to satisfy the basic fluid laws. This model is a simpler version than the corresponding Eulerian coordinates, because the convection term of the Euler equations disappears. The numerical simulations conform to classical results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time stepsn andn+1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.  相似文献   

10.
In this paper, we present a simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. The new method adopts the predictor-corrector scheme and reconstructs solutions to the macroscopic equations recovered from the lattice Boltzmann equation through Chapman-Enskog expansion analysis. The truncated power-law model is incorporated into this method to locally adjust the physical viscosity and the associated relaxation parameter, which recovers the non-Newtonian behaviors. Compared with existing non-Newtonian lattice Boltzmann models, the proposed method directly evolves the macroscopic variables instead of the distribution functions, which eliminates the intrinsic drawbacks like high cost in virtual memory and inconvenient implementation of physical boundary conditions. The validity of the method is demonstrated by benchmark tests and comparisons with analytical solution or numerical results in the literature. Benchmark solutions to the three-dimensional lid-driven cavity flow of non-Newtonian power-law fluid are also provided for future reference.  相似文献   

11.
This paper presents a new model of lattice Boltzmann method for full compressible flows. On the basis of multi‐speed model, an extra potential energy distribution function is introduced to recover the full compressible Navier–Stokes equations with a flexible specific‐heat ratio and Prandtl number. The Chapman–Enskog expansion of the kinetic equations is performed, and the two‐dimension‐seventeen‐velocity density equilibrium distribution functions are obtained. The governing equations are discretized using the third order monotone upwind scheme for scalar conservation laws finite volume scheme. The van Albada limiter is used to avoid spurious oscillations. In order to verify the accuracy of this double‐distribution‐function model, the Riemann problems, Couette flows, and flows around a NACA0012 airfoil are simulated. It is found that the proposed lattice Boltzmann model is suitable for compressible flows, even for strong shock wave problem, which has an extremely large pressure ratio, 100,000. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The fundamental kinetic equation of gas theory, the Boltzniann equation, is a complex integrodiffcrential equation. The difficulties associated with its solution are the result not only of the large number of independent variables, seven in the general case, but also of the very complicated structure of the collision integral. However, for the mechanics of rarefied gases the primary interest lies not in the distribution function itself, which satisfies the Boltzmann equation, but rather in its first few moments, i.e., the averaged characteristics. This circumstance suggests the possibility of obtaining the averaged quantities by a simpler way than the direct method of direct solution of the Boltzmann equation with subsequent calculation of the integrals.It is well known that if a distribution function satisfies the Boltzmann equation, then its moments satisfy an infinite system of moment equations. Consequently, if we wish to obtain with satisfactory accuracy some number of first moments, then we must require that these moments satisfy the exact system of moment equations. However, this does not mean that to determine the moments of interest to us we must solve this system, particularly since the system of moment equations is not closed. The closure of the system by specifying the form of the distribution function (method of moments) can be considered only as a rough approximate method of solving problems. First, in this case it is not possible to satisfy all the equations and we must limit ourselves to certain of the equations; second, generally speaking, we do not know which equation the selected distribution function satisfies, and, consequently, we do not know to what degree it has the properties of the distribution function which satisfies the Boltzmann equation.A more reliable technique for solving the problems of rarefied gasdynamics is that based on the approximation of the Boltzmann equation, more precisely, the approximation of the collision integral. The idea of replacing the collision integral by a simpler expression is not new [1–4]. The kinetic equations obtained as a result of this replacement are usually termed model equations, since their derivation is usually based on physical arguments and not on the direct use of the properties of the Boltzmann collision integral. In this connection we do not know to what degree the solutions of the Boltzmann equation and the model equations are close, particularly since the latter do not yield the possibility of refining the solution. Exceptions are the kinetic model for the linearized Boltzmann equation [5] and the sequence of model equations of [6], constructed by a method which is to some degree analogous with that of [5].In the present paper we suggest for the simplification of the solution of rarefied gas mechanics problems a technique for constructing a sequence of approximate kinetic equations which is based on an approximation of the collision integral. For each approximate equation (i.e., equation with an approximate collision operator) the first few moment equations coincide with the exact moment equations. It is assumed that the accuracy of the approximate equation increases with increase of the number of exact moment equations. Concretely, the approximation for the collision integral consists of a suitable approximation of the reverse collision integral and the collision frequency. The reverse collision integral is represented in the form of the product of the collision frequency and a function which characterizes the molecular velocity distribution resulting from the collisions, where the latter is selected in the form of a locally Maxwellian function multiplied by a polynomial in terms of the components of the molecular proper velocities. The collision frequency is approximated by a suitable expression which depends on the problem conditions. For the majority of problems it may obviously be taken equal to the collision frequency calculated from the locally Maxwellian distribution function; if necessary the error resulting from the inexact calculation of the collision frequency may be reduced by iterations.To illustrate the method, we solve the simplest problem of rarefied gas theory-the problem on the relaxation of an initially homogeneous and isotropic distribution in an unbounded space to an equilibrium distribution.The author wishes to thank A. A. Nikol'skii for discussions of the study and V. A. Rykov for the numerical results presented for the exact solution.  相似文献   

13.
This paper describes parallel computing approach for simulating turbulent flows using a moment base lattice Boltzmann method. The distribution functions of the lattice Boltzmann method are expressed by corresponding moments. Choosing proper relaxation times for higher order moments, a minimum numerical dissipation is implicitly added to stabilise the method at high Reynolds numbers. Validation of the method is made by computing free decaying periodic turbulent flows and fully developed turbulent channel flows on a GPU platform. Though the present method requires additional work to calculate the higher order moments, it is shown that additional computational cost is negligible in the GPU computing. The numerical results stably obtained for the turbulent flows are in good agreement with those of a pseudo-spectral method and corresponding DNS database.  相似文献   

14.
This paper proposes a new kinetic-theory-based high-resolution scheme for the Euler equations of gas dynamics. The scheme uses the well-known connection that the Euler equations are suitable moments of the collisionless Boltzmann equation of kinetic theory. The collisionless Boltzmann equation is discretized using Sweby's flux-limited method and the moment of this Boltzmann level formulation gives a Euler level scheme. It is demonstrated how conventional limiters and an extremum-preserving limiter can be adapted for use in the scheme to achieve a desired effect. A simple total variation diminishing criteria relaxing parameter results in improving the resolution of the discontinuities in a significant way. A 1D scheme is formulated first and an extension to 2D on Cartesian meshes is carried out next. Accuracy analysis suggests that the scheme achieves between first- and second-order accuracy as is expected for any second-order flux-limited method. The simplicity and the explicit form of the conservative numerical fluxes add to the efficiency of the scheme. Several standard 1D and 2D test problems are solved to demonstrate the robustness and accuracy.  相似文献   

15.
A ghost fluid Lattice Boltzmann method (GF‐LBM) is developed in this study to represent complex boundaries in Lattice Boltzmann simulations of fluid flows. Velocity and density values at the ghost points are extrapolated from the fluid interior and domain boundary via obtaining image points along the boundary normal inside the fluid domain. A general bilinear interpolation algorithm is used to obtain values at image points which are then extrapolated to ghost nodes thus satisfying hydrodynamic boundary conditions. The method ensures no‐penetration and no‐slip conditions at the boundaries. Equilibrium distribution functions at the ghost points are computed using the extrapolated values of the hydrodynamic variables, while non‐equilibrium distribution functions are extrapolated from the interior nodes. The method developed is general, and is capable of prescribing Dirichlet as well as Neumann boundary conditions for pressure and velocity. Consistency and second‐order accuracy of the method are established by running three test problems including cylindrical Couette flow, flow between eccentric rotating cylinders and flow over a cylinder in a confined channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

17.
We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coefficient and 4th order viscosity. The parameters of this scheme can be determined by analysing the energy dissipation. The project supported by the Foundation of the Laboratory for Nonlinear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences  相似文献   

18.
李勇  钱蔚旻  何录武 《力学季刊》2019,40(3):567-576
挤出胀大的数值模拟是非牛顿流体研究中具有挑战性的问题.本文运用格子Boltzmann方法(LBM)分析Oldroyd-B和多阶松弛谱PTT粘弹流体的挤出胀大现象,采用颜色模型模拟出口处粘弹流体和空气的两相流动,通过重新标色获得两种流体的界面,并最终获得胀大的形状.Navier-Stokes方程和本构方程的求解采用双分布函数模型.将胀大的结果与解析解、实验解和单相自由面LBM结果进行了比较,发现格子Boltzmann两相模型结果与解析解和实验结果相吻合,相比于单相模型,收敛速度更快,解的稳定性更高.研究了流道尺寸对胀大率的影响,并对挤出胀大的内在机理进行了分析.  相似文献   

19.
The simulation of viscoelastic fluids is a challenging task from the theoretical and numerical points of view. This class of fluids has been extensively studied with the help of classical numerical methods. In this paper we propose a new approach based on the lattice Boltzmann method in order to simulate linear and non-linear viscoelastic fluids and in particular those described by the Oldroyd-B and FENE-P constitutive equations. We study the accuracy and stability of our model on three different benchmarks: the 3D Taylor–Green vortex decay, the simplified 2D four-rolls mill, and the 2D Poiseuille flow. To our knowledge, the methodology described in this work is a first attempt for the simulation of non-trivial flows of viscoelastic fluids using the lattice Boltzmann method to discretize the constitutive and conservation equations.  相似文献   

20.
用格子Boltzmann方法模拟Belousov-Zhabotinsky反应中的靶型波   总被引:2,自引:0,他引:2  
构造了用于Belosov-Zhabotinsky反应的格子Boltzmann模型。通过对使用多组分的分布函数满足的格子Boltzmann方程,进行多重尺度Knudsen数展开,得到了模型的平衡态分布函数的各向同性解。作为算例,给出随机初始条件下反应区域内的靶型波的模拟结果,再现了Belousov-Zhabotinsky反应的经典结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号