首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a problem we have encountered using a stabilized finite element method on fixed grids for flows with interfaces modelled with the level set approach. We propose a solution based on enriching the pressure shape functions on the elements cut by the interface. The enrichment is used to enable the pressure gradient to be discontinuous at the interface, thus improving the ability to simulate the behaviour of fluids with different density under a gravitational force. The additional shape function used is local to each element and the corresponding degree of freedom can therefore be condensed prior to assembly, making the implementation quite simple on any existing finite element code. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a new high‐order and high‐resolution method called the Runge–Kutta control volume discontinuous finite element method (RKCVDFEM) was proposed to solve 1D and 2D systems of hyperbolic conservation laws. Its main advantage lies in the local conservation, and it is simpler than the Runge–Kutta discontinuous Galerkin finite element method (RKDGM). The theoretical analysis showed that the RKCVDFEM has formally an optimal convergence order for 1D systems. Based on logically rectangular grids of irregular quadrilaterals, a scheme for 2D systems was constructed. Some classical problems were simulated and the validity of the method was presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A moving finite element algorithm has been compared against the upwind-differencing and Smolarkiewicz methods for the population balance equation of multicomponent particle growth processes. Analytical solutions and an error function have been used to test the numerical methods. The moving finite elements technique is much more accurate than other methods for a wide range of parameters. Since this method uses moving grids, it is able to model very narrow particle size distributions. It is also shown that the method can be extended to solve condensational growth problems which include particle curvature and non-continuum mass transfer effects.  相似文献   

4.
The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used to approximate the curved beam have better accuracy than the straight beam element. The curved beam element constructed by displacement method can not satisfy rigid body motion condition and the very fine grids have to be used in order to satisfy rigid body motion condition approximately.In this paper it is proved that the straight beam element and the quasi-conforming element of the curved beam and shallow curved beam, when element size is reduced infinitely, have convergence rate with the same order O(l2) and when regular elements are used l is the element length.The Project Supported by National Natural Science Foundation of China.  相似文献   

5.
A moving discontinuous Galerkin finite element method with interface condition enforcement is formulated for flows with discontinuous interfaces. The underlying weak formulation enforces the interface condition separately from the conservation law, so that the residual only vanishes upon satisfaction of both. In this formulation, the discrete grid geometry is treated as a variable, so that, in contrast to the standard discontinuous Galerkin method, this method has both the means to detect interfaces, via interface condition enforcement, and to satisfy, via grid movement, the conservation law and its associated interface condition. The method therefore directly fits interfaces, including shocks, preserving a high-order representation up to the interface without requiring shock capturing or an upwind numerical flux to achieve stability. It can be generalized to flows with a priori unknown interfaces with nontrivial topology and curved interface geometry as well as to an arbitrary number of spatial dimensions. Unsteady flows are represented in a manner similar to steady flows using a space-time formulation. In addition to computing flows with interfaces, the method can represent point singularities in a flow field by degenerating cuboid elements. In general, the method works in conjunction with standard local grid operations, including edge collapse, to ensure that degenerate cells are removed. Test cases are presented for up to three-dimensional flows that provide an initial assessment of the stability and accuracy of the method.  相似文献   

6.
徐胜利  程耿东 《力学学报》2010,42(2):238-244
采用基于单元(结点)密度为设计变量进行结构和材料的拓扑优化设计时,有限元网格的密度对优化设计有很大影响. 在以渗透系数为目标进行材料微结构设计时,为了较好地描述单胞中的流固边界,需要将单胞划分为很小的网格,进一步增加了有限元计算和优化分析的规模. 为了降低计算规模, 研究了基于自适应网格的逆均匀化方法,以最大化各向同性等效渗透系数为目标,进行材料微结构设计. 优化迭代过程中,对单胞中流固界面处的网格进行自适应加密,降低优化问题的计算规模. 采用这一算法,对不同初始密度分布得到的单胞优化结果虽然不同,但具有相同的材料微结构,一定程度上说明了该方法的有效性.   相似文献   

7.
混凝土细观随机骨料结构与有限元网格剖分   总被引:23,自引:1,他引:22  
在细观层次上,混凝土被认为是一种由粗骨料、水泥砂浆及二者间的粘结带所组成三相非均质复合材料。本文首先基于蒙特卡罗随机抽样原理,用“取和放”方法在计算机上产生形状、尺寸和骨料颗粒分布与真实混凝土相似的随机骨料结构,再使用有限元分析软件ANSYS对骨料区域及砂浆区域分别划分网格,并编程在骨料和砂浆之间生成三角形三结点可控制厚度粘结单元,从而使三相网格缝合为一个整体,为混凝土非线性有限元分析提供可靠的细观计算模型。最后利用建立的模型进行混凝土轴心受拉和轴心受压的仿真模拟,在细观层次研究的基础上揭示出混凝土的宏观力学性能。  相似文献   

8.
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.  相似文献   

9.
Accurate modeling of interfacial flows requires a realistic representation of interface topology. To reduce the computational effort from the complexity of the interface topological changes, the level set method is widely used for solving two‐phase flow problems. This paper presents an explicit characteristic‐based finite volume element method for solving the two‐dimensional level set equation. The method is applicable for the case of non‐divergence‐free velocity field. Accuracy and performance of the proposed method are evaluated via test cases with prescribed velocity fields on structured grids. By given a velocity field, the motion of interface in the normal direction and the mean curvature, examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
传统无厚度粘结单元法CFEM (Cohesive finite element method)在模拟脆性材料断裂方面具有很强的优势,但也存在很大问题.一是单元尺寸增大,收敛性变差;二是单元尺寸变小,模型刚度发生折减.为了克服这两个问题,发展了考虑厚度的局部粘结单元法,即在裂纹可能扩展区插入具有一定厚度的粘结面单元.粘结面单元采用拓展虚内键本构(Augmented virtual internal bond)描述.由于考虑了厚度,粘结面交叉处会形成多边形空缺.为了弥补这一空缺,将其看作多边形键元胞,采用离散虚内键模型(Discretized virtual internal bond)对其建模,保证了模型的几何完整性.模拟结果表明,本文方法有效,克服了传统CFEM方法的刚度折减问题,提高了计算稳定性和收敛性.  相似文献   

11.
岩石、混凝土类材料断裂破坏有限元数值模拟中的网格重划,依据单元畸变和裂缝介质间的单元干涉作为网格重划判据,采用几何体重构技术把几何实体分解成能在ANSYS上实现六面体网格划分的几个部分,利用体积判断法确定新结点在旧单元的单元编号,在场量传递上采用基于解析性质的等参有限元逆变换,把旧网格场量信息传递到新网格中。本文对ANSYS进行二次开发,实现了三维网格重划,网格重划采用单元畸变和界面干涉两个判据,在网格再划分前进行几何体重构,提取变形后的点线面信息重新生成实体,充分利用AN-SYS的函数和体积判断法找到新结点在旧网格中的位置,在新旧网格间的场量传递中采用基于解析逆等参单元法。在平台上实现了三维有限元网格重划技术,最后利用方料的单轴压缩断裂模拟计算检验了传递前后等效塑性应变分布用载荷信息的变化,证明了所开发系统的正确性。  相似文献   

12.
This paper presents a simple finite element method for Stokes flows with surface tension. The method uses an unfitted mesh that is independent of the interface. Due to the surface force, the pressure has a jump across the interface. Based on the properties of the level set function that implicitly represents the interface, the jump of the pressure is removed, and a new problem without discontinuities is formulated. Then, classical stable finite element methods are applied to solve the new problem. Some techniques are used to show that the method is equivalent to an easy‐to‐implement method that can be regarded as a traditional method with a modified pressure space. However, the matrix of the resulting linear system of equations is the same as that of the traditional method. Optimal error estimates are derived for the proposed method. Finally, some numerical tests are presented to confirm the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Finite‐element simulation was performed to predict the incompressible Navier–Stokes flow in a domain, partly bounded by an elastic vessel, which is allowed to vary with time. Besides satisfying the physical conservation laws, both surface and the volume conservation laws are satisfied at the discrete level for ensuring the balance between physical and geometrical variables. Several problems which are amenable to analytical solutions were tested for validating the method. The simulated results are observed to agree favourably with analytical solutions. Having verified the applicability of the finite‐element code to problems involving moving grids, we consider an incompressible fluid flow bounded by rigid and elastic vessel walls. Our emphasis was placed on the validation of the formulation developed within the moving‐grid framework. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
We describe an adaptive finite element algorithm for solving the unsteady Euler equations. The finite element algorithm is based on a Taylor/Galerkin formulation and uses a very fast and efficient data structure to refine and unrefine the grid in order to optimize the approximation. We give a general version of the method which can be applied to moving grids with sliding interfaces and we present the results for a transient supersonic calculation of rotor-stator interaction.  相似文献   

15.
An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.  相似文献   

16.
分区界面元-有限元-无限元混合模型   总被引:6,自引:1,他引:5  
利用界面元良好的相容性,引入过渡界面元的概念.实现了界面元与有限元二种数值计算方法的结合,并提出了一种界面元-有限元-无限元混合模型。这种混合模型既可以发挥界面元计算精度高、适用于不连续变形等优点.又能够充分利用有限元的计算效率和无限元方便处理无限域介质的特点,较为和谐地解决了计算精度和计算效率的矛盾。数值算例表明,本文所建立的混合模型的有效性,揭示此类混合模型具有广阔的工程应用前景。  相似文献   

17.
将精细积分边界元法和界面追踪法相结合求解相变问题。因为边界元法只需要将待求解空间域的边界离散,方便连续追踪移动界面位置和重构网格,所以边界元法适合应用于移动边界问题的模拟。首先,利用精细积分边界元法在固相区域和液相区域分别求解相应的瞬态热传导控制方程,从而求得温度场和边界热流密度。然后,根据固-液相变界面上的能量平衡方程,利用热流密度求得相变界面的移动速度,再采用界面追踪法预测移动相变界面的位置变化。最后,给出了几个数值算例,并通过与参考解的对比验证本文方法的准确性。  相似文献   

18.
The control volume finite element method (CVFEM) was developed to combine the local numerical conservation property of control volume methods with the unstructured grid and generality of finite element methods (FEMs). Most implementations of CVFEM include mass‐lumping and upwinding techniques typical of control volume schemes. In this work we compare, via numerical error analysis, CVFEM and FEM utilizing consistent and lumped mass implementations, and stabilized Petrov–Galerkin streamline upwind schemes in the context of advection–diffusion processes. For this type of problem, we find no apparent advantage to the local numerical conservation aspect of CVFEM as compared to FEM. The stabilized schemes improve accuracy and degree of positivity on coarse grids, and also reduce iteration counts for advection‐dominated problems. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

19.
In this investigation, the enriched element method developed by Benzley was extended to treat the stress analysis problem involving a bimaterial interface crack. Unlike crack problems in isotropic elasticity, where the stress singularity at the crack tip is of the inverse square root type, the interface crack contains an additional oscillatory singularity. Although the effect of this oscillatory characteristic is confined to a region very close to the crak tip, it nevertheless requires proper treatment in order to obtain accurate predictions on the stress intensity factors. Using appropriate crack tip stress and displacement expressions, the enriched element method can model the stress singularity for an interface crack exactly. The finite element implementation of this method has been made on the code APES. Stress intensity factor results predicted by the modified APES program compare favorably with those available in the literature. This indicates tha the enriched element technique provides an accurate and efficient numerical tool for the analysis of bimaterial interface crack problems.  相似文献   

20.
In this paper, two-grid immersed finite element(IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension. Because of the advantages of finite element(FE) formulation and the simple structure of Cartesian grids, the IFE discretization is used in this paper. Two-grid schemes are formulated to linearize the FE equations. It is theoretically and numerically illustrated that the coarse space can be selected as coarse asH= O(h~(1/4))(orH=O(h~(1/8))), and the asymptotically optimal approximation can be achieved as the nonlinear schemes. As a result, we can settle a great majority of nonlinear equations as easy as linearized problems. In order to estimate the present two-grid algorithms, we derive the optimal error estimates of the IFE solution in theL pnorm. Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号