首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finite element modeling of planar 4:1 contraction flow (isothermal incompressible and creeping) around a sharp entrance corner is performed for favored differential constitutive equations such as the Maxwell, Leonov, Giesekus, FENE-P, Larson, White-Metzner models and the Phan Thien-Tanner model of exponential and linear types. We have implemented the discrete elastic viscous stress splitting and streamline upwinding algorithms in the basic computational scheme in order to augment stability at high flow rate. For each constitutive model, we have obtained the upper limit of the Deborah number under which numerical convergence is guaranteed. All the computational results are analyzed according to consequences of mathematical analyses for constitutive equations from the viewpoint of stability. It is verified that in general the constitutive equations proven globally stable yield convergent numerical solutions for higher Deborah number flows. Therefore one can get solutions for relatively high Deborah number flows when the Leonov, the Phan Thien-Tanner, or the Giesekus constitutive equation is employed as the viscoelastic field equation. The close relationship of numerical convergence with mathematical stability of the model equations is also clearly demonstrated.  相似文献   

2.
The dynamics of single droplets in a bounded shear flow is experimentally and numerically investigated for blends that contain one viscoelastic component. Results are presented for systems with a viscosity ratio of 1.5 and a Deborah number for the viscoelastic phase of 1. The numerical algorithm is a volume-of-fluid method for tracking the placement of the two liquids. First, we demonstrate the validation of the code with an existing boundary integral method and with experimental data for confined systems containing Newtonian components. This is followed by numerical simulations and experimental data for the combined effect of geometrical confinement and component viscoelasticity on the droplet dynamics after startup of shear flow at a moderate capillary number. The viscoelastic liquids are Boger fluids, which are modeled with the Oldroyd-B constitutive model and the Giesekus model. Confinement substantially increases the viscoelastic stresses and the elongation rates in and around the droplet. We show that the latter can be dramatic for the use of the Oldroyd-B model in confined systems with viscoelastic components. A sensitivity analysis for the choice of the model parameters in the Giesekus constitutive equation is presented.  相似文献   

3.
The influence of matrix and droplet viscoelasticity on the steady deformation and orientation of a single droplet subjected to simple shear is investigated microscopically. Experimental data are obtained in the velocity–vorticity and velocity–velocity gradient plane. A constant viscosity Boger fluid is used, as well as a shear-thinning viscoelastic fluid. These materials are described by means of an Oldroyd-B, Giesekus, Ellis, or multi-mode Giesekus constitutive equation. The drop-to-matrix viscosity ratio is 1.5. The numerical simulations in 3D are performed with a volume-of-fluid algorithm and focus on capillary numbers 0.15 and 0.35. In the case of a viscoelastic matrix, viscoelastic stress fields, computed at varying Deborah numbers, show maxima slightly above the drop tip at the back and below the tip at the front. At both capillary numbers, the simulations with the Oldroyd-B constitutive equation predict the experimentally observed phenomena that matrix viscoelasticity significantly suppresses droplet deformation and promotes droplet orientation. These two effects saturate experimentally at high Deborah numbers. Experimentally, the high Deborah numbers are achieved by decreasing the droplet radius with other parameters unchanged. At the higher capillary and Deborah numbers, the use of the Giesekus model with a small amount of shear-thinning dampens the stationary state deformation slightly and increases the angle of orientation. Droplet viscoelasticity on the other hand hardly affects the steady droplet deformation and orientation, both experimentally and numerically, even at moderate to high capillary and Deborah numbers.  相似文献   

4.
Using the fact that for simple fluids the most general constitutive equation in constant stretch history flows for the extra stress tensor τ is known in an explicit form, the Giesekus fluid model is cast into this (ω–D) form for two-dimensional flows. The three material functions needed to characterize τ are listed. The explicit results for simple shear and planar elongation reveal that the parameter α should be restricted to values less than 0.5. It is demonstrated that in this explicit form the constitutive equation is free from thermodynamic objections and can thus be used as a starting point for numerical calculations of general, but steady, two-dimensional flows. Received: 9 November 1998 Accepted: 20 May 1999  相似文献   

5.
In a recent series of papers, Öttinger's consistently averaged hydrodynamic interaction has been shown to yield shear-rate dependent viscosity and normal stress coefficients in steady shear flow for dilute solutions of elastic dumbbells and chains. Even more recently, Fan has numerically solved the diffusion equation for the Hookean dumbbell with complete hydrodynamic interaction and he has compared his results with those of the Öttinger model.In this paper, a new approximation1 for the Oseen—Burgers tensor is proposed where the configuration-dependent terms are replaced by appropriate averages rather than averaging the Oseen—Burgers tensor as a whole as in the Öttinger model. The proposed model leads to a differential constitutive equation which at low shear rates is similar to the Giesekus constitutive equation for a Hookean dumbbell with anistropic drag and anisotropic Brownian motion. The steady shear viscosity and normal stress coefficients for the proposed model are shear-rate dependent and are in close agreement with Fan's numerical calculations. Elongational viscosity for both positive and negative elongation rates are calculated.  相似文献   

6.
A new constitutive equation for whole human blood is derived using ideas drawn from temporary polymer network theory to model the aggregation and disaggregation of erythrocytes in normal human blood at different shear rates. Each erythrocyte is represented by a dumbbell. The use of a linear spring law in the dumbbells leads to a multi-mode generalized Maxwell equation for the elastic stress and both the relaxation times and viscosities are functions of a time-dependent structure variable. An approximate constitutive equation is derived by choosing a single mode corresponding to the cell aggregate size where the largest number of cells are to be found. This size is identified in the case of steady flows. The model exhibits shear-thinning, viscoelasticity and thixotropy and these are clearly related to the microstructural properties of the fluid. Agreement with the experimental data of Bureau et al. [M. Bureau, J.C. Healy, D. Bourgoin, M. Joly, Rheological hysteresis of blood at low shear rate, Biorheology 17 (1980) 191–203] in the case of a simple triangular step shear rate flow is convincing.  相似文献   

7.
In the present work, nonlinear oscillations of a spherical, acoustically driven gas bubble in a Giesekus liquid are examined numerically. A novel approach based on the Gauss–Laguerre quadrature (GLQ) method is implemented to solve the integro-differential equation governing bubble dynamics in a Giesekus liquid. It is shown that, using this robust method, numerical results could be obtained at very high amplitudes and frequencies typical of ultrasound applications. The GLQ method also enabled obtaining results at very high Deborah and Reynolds numbers over prolonged dimensionless times not reported previously. Based on the results obtained in this work, it is concluded that the GLQ method is well suited for bubble dynamics studies in viscoelastic liquids. It is also concluded that the extensional-flow behavior of the liquid surrounding the bubble (as represented by the mobility factor in the Giesekus model) has a strong effect on the chaotic behavior of the bubble, and this is particularly so at high Deborah numbers, high amplitudes and/or high frequencies of the acoustic field. A period-doubling bifurcation structure is predicted to occur for certain values of the mobility factor.  相似文献   

8.
Finite element calculations of two-dimensional flows of viscoelastic fluids in a journal bearing geometry reported in an earlier paper (J. Non-Newt. Fluid Mech. 16 (1984) 141-172) are extended to higher eccentricity (ρ = 0.4); at this higher eccentricity flow separation occurs in the wide part of the gap for a Newtonian fluid. Calculations for the second-order fluid (SOF), upper-convected Maxwell (UCM), and the Giesekus models are continued in increasing Deborah number for each model until either a limit point is reached or oscillations in the solution make the numerical accuracy too poor to warrant proceeding. No steady solutions to the UCM model were found beyond a limit point Dec, as was the case for results at low eccentricities. The value of Dec was moderately stabel to mesh refinement. A limit point also terminated the calculations with a SOF model, in contradiction to the theorems for uniqueness and existence for this model. The critical value of De increased drastically with increasing refinement of the mesh, as expected for solution pathology caused by approximation error. Calculations for the Giesekus fluid with the mobility parameter α ≠ O showed no limit points, but failed when irregular oscillations destroyed the quality of the solution. The behavior of the recirculation region of the flow and the load on the inner cylinder were very sensitive to the value of α used in the Giesekus model. The recirculation disappeared at low values of De except when the mobility parameter α was so small that the viscosity was almost constant over the range of shear rates in the calculations. The recirculation persisted over the entire range of accessible De for the UCM fluid, the limit of α = O of the Giesekus model. The behavior of the recirculation is coupled directly to the viscosity by calculations with an inelastic fluid with the same viscosity predicted by the Giesekus model.  相似文献   

9.
A numerical scheme based on the Finite Element Method has been developed which uses a relaxation factor in the momentum equation with the stresses being evaluated via a streamwise integration procedure. A constitutive equation introduced by Leonov has been used to represent the rheological behavior of the fluid. The convergence of the scheme has been tested on a 2 : 1 abrupt contraction problem by successive mesh refinement for non-dimensional characteristic shear rates, of 5 and 50 for polyisobutylene Vistanex at 27 °C. The recirculation region is shown to increase in size with non-dimensional characteristic shear rate.Theoretical predictions have been compared with the experimental data which include birefringence and pressure loss measurements. In general, the comparisons have been reasonably good and demonstrates the usefulness of the present numerical scheme and the Leonov constitutive equation to describe real polymer flows.  相似文献   

10.
Many applications of viscoelastic free surface flows requiring formation of drops from small nozzles, e.g., ink-jet printing, micro-arraying, and atomization, involve predominantly extensional deformations of liquid filaments. The capillary number, which represents the ratio of viscous to surface tension forces, is small in such processes when drops of water-like liquids are formed. The dynamics of extensional deformations of viscoelastic liquids that are weakly strain hardening, i.e., liquids for which the growth in the extensional viscosity is small and bounded, are here modeled by the Giesekus, FENE-P, and FENE-CR constitutive relations and studied at low capillary numbers using full 2D numerical computations. A new computational algorithm using the general conformation tensor based constitutive equation [M. Pasquali, L.E. Scriven, Theoretical modeling of microstructured liquids: a simple thermodynamic approach, J. Non-Newtonian Fluid Mech. 120 (2004) 101–135] to compute the time dependent viscoelastic free surface flows is presented. DEVSS-TG/SUPG mixed finite element method [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on conformation tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409] is used for the spatial discretization and a fully implicit second-order predictor–corrector scheme is used for the time integration. Inertia, capillarity, and viscoelasticity are incorporated in the computations and the free surface shapes are computed along with all the other field variables in a fully coupled way. Among the three models, Giesekus filaments show the most drastic thinning in the low capillary number regime. The dependence of the transient Trouton ratio on the capillary number in the Giesekus model is demonstrated. The elastic unloading near the end plates is investigated using both kinematic [M. Yao, G.H. McKinley, B. Debbaut, Extensional deformation, stress relaxation and necking failure of viscoelastic filaments, J. Non-Newtonian Fluid Mech. 79 (1998) 469–501] and energy analyses. The magnitude of elastic unloading, which increases with growing elasticity, is shown to be the largest for Giesekus filaments, thereby suggesting that necking and elastic unloading are related.  相似文献   

11.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

12.
We apply the observability rank condition to study the observability of various viscoelastic fluids under imposed shear or extensional flows. In this paper the observability means the ability of determining the viscoelastic stress from the time history of the observations of the first normal stress difference. We consider four viscoelastic models: the upper convected Maxwell (UCM) model, the Phan–Thien–Tanner (PTT) model, the Johnson–Segalman (JS) model and the Giesekus model. Our study reveals that all of the four models have observability for all stress components almost everywhere under shear flow whereas under extensional flow most of the models have no observability for the shear stress component. More specifically, for UCM and JS models under imposed shear flow, the observations of the first normal stress difference allow the reconstruction of all components of viscoelastic stress. For UCM and JS models under extensional flow, the two normal stress components can be determined from the measurements of the first normal stress difference; the shear stress component does not affect the evolution of the normal stress components and consequently it cannot be extracted from the observations. Under shear flow, the PTT and Giesekus models have observability almost everywhere. That is, all components of the viscoelastic stress can be determined from the observations when the vector formed by the components of viscoelastic stress does not lie on a certain surface. Under extensional flow, the PTT model has observability almost everywhere for normal stress components whereas the Giesekus model has observability almost everywhere for all stress components. We also run simulations using the unscented Kalman filter (UKF) to reconstruct the viscoelastic stress from observations without and with noises. The UKF yields accurate and robust estimates for the viscoelastic stress both in the absence and in the presence of observation noises.  相似文献   

13.
Study on the numerical schemes for hypersonic flow simulation   总被引:1,自引:0,他引:1  
Hypersonic flow is full of complex physical and chemical processes, hence its investigation needs careful analysis of existing schemes and choosing a suitable scheme or designing a brand new scheme. The present study deals with two numerical schemes Harten, Lax, and van Leer with Contact (HLLC) and advection upstream splitting method (AUSM) to effectively simulate hypersonic flow fields, and accurately predict shock waves with minimal diffusion. In present computations, hypersonic flows have been modeled as a system of hyperbolic equations with one additional equation for non-equilibrium energy and relaxing source terms. Real gas effects, which appear typically in hypersonic flows, have been simulated through energy relaxation method. HLLC and AUSM methods are modified to incorporate the conservation laws for non-equilibrium energy. Numerical implementation have shown that non-equilibrium energy convect with mass, and hence has no bearing on the basic numerical scheme. The numerical simulation carried out shows good comparison with experimental data available in literature. Both numerical schemes have shown identical results at equilibrium. Present study has demonstrated that real gas effects in hypersonic flows can be modeled through energy relaxation method along with either AUSM or HLLC numerical scheme.  相似文献   

14.
The numerical computation of viscoelastic fluid flows with differential constitutive equations presents various difficulties. The first one lies in the numerical convergence of the complex numerical scheme solving the non-linear set of equations. Due to the hybrid type of these equations (elliptic and hyperbolic), geometrical singularities such as reentrant corner or die induce stress singularities and hence numerical problems. Another difficulty is the choice of an appropriate constitutive equation and the determination of rheological constants. In this paper, a quasi-Newton method is developed for a fluid obeying a multi-mode Phan-Thien and Tanner constitutive equation. A confined convergent geometry followed by the extrudate swell has been considered. Numerical results obtained for two-dimensional or axisymmetric flows are compared to experimental results (birefringence patterns or extrudate swell) for a linear low density polyethylene (LLDPE) and a low density polyethylene (LDPE).  相似文献   

15.
A modification of the Giesekus constitutive equation is derived by incorporating (approximately, via the Peterlin approximation) the finite extensibility of polymer molecules into dumbbell kinetic theory along with the anisotropic hydrodynamic drag suggested by Giesekus. The constitutive equation that is obtained retains much of the simplicity of Giesekus' constitutive equation, but it involves terms that are cubic in the stress as well as those that are quadratic. It is shown that the constitutive equation quantitatively describes the steady elongational viscosity of the IUPAC polymer melt A (including the strain softening of the melt), but it cannot describe the elongational and shear viscosities simultaneously. It is also shown that the constitutive equation satisfies the Lodge-Meissner relation for shear strains less than unity.  相似文献   

16.
The reduced-order model(ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition(POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption,valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes(N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation(DNS) results, the proposed model predicts flow dynamics(e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.  相似文献   

17.
Accurate and robust finite element methods for computing flows with differential constitutive equations require approximation methods that numerically preserve the ellipticity of the saddle point problem formed by the momentum and continuity equations and give numerically stable and accurate solutions to the hyperbolic constitutive equation. We present a new finite element formulation based on the synthesis of three ideas: the discrete adaptive splitting method for preserving the ellipticity of the momentum/continuity pair (the DAVSS formulation), independent interpolation of the components of the velocity gradient tensor (DAVSS-G), and application of the discontinuous Galerkin (DG) method for solving the constitutive equation. We call the method DAVSS-G/DG. The DAVSS-G/DG method is compared with several other methods for flow past a cylinder in a channel with the Oldroyd-B and Giesekus constitutive models. Results using the Streamline Upwind Petrov–Galerkin method (SUPG) show that introducing the adaptive splitting increases considerably the range of Deborah number (De) for convergence of the calculations over the well established EVSS-G formulation. When both formulations converge, the DAVSS-G and DEVSS-G methods give comparable results. Introducing the DG method for solution of the constitutive equation extends further the region of convergence without sacrificing accuracy. Calculations with the Oldroyd-B model are only limited by approximation of the almost singular gradients of the axial normal stress that develop near the rear stagnation point on the cylinder. These gradients are reduced in calculations with the Giesekus model. Calculations using the Giesekus model with the DAVSS-G/DG method can be continued to extremely large De and converge with mesh refinement.  相似文献   

18.
The flow of a 5.0 wt.% solution of polyisobutylene in tetradecane through a planar 4 : 1 contraction exhibiting a shear thinning viscosity is simulated using the flow-type sensitive quasi-Newtonian fluid model. The shear viscosity is fitted by the Giesekus model, which, with the chosen parameters, leads to an extension thickening elongational viscosity. The stress and velocity fields of the numerical simulations are compared with the experimental results of Quinzani et al. [J. Non-Newtonian Fluid Mech. 52 (1994) 1–36] and the numerical results of the viscoelastic simulation using the Giesekus model of Azaiez et al. [J. Non-Newtonian Fluid Mech. 62 (1996) 253–277]. It can be shown that the quasi-Newtonian fluid qualitatively predicts the essential features of the flow in the vicinity of the contraction.  相似文献   

19.
水泥砂浆的一个热粘弹性率型损伤本构模型   总被引:1,自引:0,他引:1  
陶俊林  李奎 《爆炸与冲击》2011,31(3):268-273
利用SHPB实验系统及自行研制的混凝土类材料快速高温加热设备,对水泥砂浆试件进行了不同 温度(20~600℃)和3种冲击速度下的实验,得到了不同温度和冲击速度下水泥砂浆试件的应力应变关系曲 线。基于ZWT粘弹性本构模型,并且考虑高温下水泥砂浆损伤演化规律都服从Weibull分布,提出了一个水 泥砂浆的热粘弹性率型损伤本构模型。通过数据拟合,获得了本构模型的相关参数,结果表明:理论预测和实 验结果吻合良好。  相似文献   

20.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号