共查询到11条相似文献,搜索用时 0 毫秒
1.
E. YILMAZ M. S. KAVSAOGLU H. U. AKAY I. S. AKMANDOR 《International Journal of Computational Fluid Dynamics》2013,27(4):271-286
A parallel adaptive Euler flow solution algorithm is developed for 3D applications on distributed memory computers. Significant contribution of this research is the development and implementation of a parallel grid adaptation scheme together with an explicit cell vertex-based finite volume 3D flow solver on unstructured tetrahedral grids. Parallel adaptation of grids is based on grid-regeneration philosophy by using an existing serial grid generation program. Then, a general partitioner repartitions the grid. An adaptive sensor value, which is a measure to refine or coarsen grids, is calculated considering the pressure gradients in all partitioned blocks of grids. The parallel performance of the present study was tested. Parallel computations were performed on Unix workstations and a Linux cluster using MPI communication library. The present results show that overall adaptation scheme developed in this study is applicable to any pair of a flow solver and grid generator with affordable cost. It is also proved that parallel adaptation is necessary for accurate and efficient flow solutions. 相似文献
2.
Scott C. Hagen Olaf Horstmann Robert J. Bennett 《International Journal of Computational Fluid Dynamics》2013,27(2):83-91
The successful implementation of a finite element model for computing shallow water flow requires: (1) continuity and momentum equations to describe the physics of the flow, (2) boundary conditions, (3) a discrete surface water region, and (4) an algebraic form of the shallow water equations and boundary conditions. Although steps (1), (2), and (4) may be documented and can be duplicated by multiple scientific investigators, the actual spatial discretization of the domain, i.e. unstructured mesh generation, is not a reproducible process at present. This inability to automatically produce variably-graded meshes that are reliable and efficient hinders fast application of the finite element method to surface water regions. In this paper we present a reproducible approach for generating unstructured, triangular meshes, which combines a hierarchical technique with a localized truncation error analysis as a means to incorporate flow variables and their derivatives. The result is a process that lays the groundwork for the automatic production of finite element meshes that can be used to model shallow water flow accurately and efficiently. The methodology described herein can also be transferred to other modeling applications. 相似文献
3.
Beginning with the Galerkin finite element method and the simplest appropriate isoparametric element for modelling the Navier-Stokes equations, the spatial approximation is modified in two ways in the interest of cost-effectiveness: the mass matrix is ‘lumped’ and all coefficient matrices are generated via 1-point quadrature. After appending an hour-glass correction term to the diffusion matrices, the modified semi-discretized equations are integrated in time using the forward (explicit) Euler method in a special way to compensate for that portion of the time truncation error which is intolerable for advection-dominated flows. The scheme is completed by the introduction of a subcycling strategy that permits less frequent updates of the pressure field with little loss of accuracy. These techniques are described and analysed in some detail, and in Part 2 (Applications), the resulting code is demonstrated on three sample problems: steady flow in a lid-driven cavity at Re ≤ 10,000, flow past a circular cylinder at Re ≤ 400, and the simulation of a heavy gas release over complex topography. 相似文献
4.
An unstructured grid-based, parallel free-surface flow solver has been extended to account for sinkage and trim effects in the calculation of steady ship waves. The overall scheme of the solver combines a finite-element, equal-order, projection-type three-dimensional incompressible flow solver with a finite element, two-dimensional advection equation solver for the free surface equation. The sinkage and trim, wave profiles, and wave drag computed using the present approach are in good agreement with experimental measurements for two hull forms at a wide range of Froude numbers. Numerical predictions indicate significant differences between the wave drag for a ship fixed in at-rest position and free to sink and trim, in agreement with experimental observations. 相似文献
5.
Charles Koeck 《国际流体数值方法杂志》1985,5(5):483-500
The unsteady Euler equations are numerically solved using the finite volume one-step scheme recently developed by Ron-Ho Ni. The multiple-grid procedure of Ni is also implemented. The flows are assumed to be homo-enthalpic; the energy equation is eliminated and the static pressure is determined by the steady Bernoulli equation; a local time-step technique is used. Inflow and outflow boundaries are treated with the compatibility relations method of ONERA. The efficiency of the multiple-grid scheme is demonstrated by a two-dimensional calculation (transonic flow past the NACA 12 aerofoil) and also by a three-dimensional one (transonic lifting flow past the M6 wing). The third application presented shows the ability of the method to compute the vortical flow around a delta wing with leading-edge separation. No condition is applied at the leading-edge; the vortex sheets are captured in the same sense as shock waves. Results indicate that the Euler equations method is well suited for the prediction of flows with shock waves and contact discontinuities, the multiple-grid procedure allowing a substantial reduction of the computational time. 相似文献
6.
A numerical procedure for solving the time-dependent, incompressible Navier-Stokes equations is presented. The present method is based on a set of finite element equations of the primitive variable formulation, and a direct time integration method which has unique features in its formulation as well as in its evaluation of the contribution of external functions. Particular processes regarding the continuity conditions and the boundary conditions lead to a set of non-linear recurrence equations which represent evolution of the velocities and the pressures under the incompressibility constraint. An iteration process as to the non-linear convective terms is performed until the convergence is achieved in every integration step. Excessively artificial techniques are not introduced into the present solution procedure. Numerical examples with vortex shedding behind a rectangular cylinder are presented to illustrate the features of the proposed method. The calculated results are compared with experimental data and visualized flow fields in literature. 相似文献
7.
VICTORITA DOLEAN STEPHANE LANTERI 《International Journal of Computational Fluid Dynamics》2013,27(4):287-304
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil. 相似文献
8.
Chi-Wang Shu 《International Journal of Computational Fluid Dynamics》2013,27(2):107-118
In recent years, high order numerical methods have been widely used in computational fluid dynamics (CFD), to effectively resolve complex flow features using meshes which are reasonable for today's computers. In this paper, we review and compare three types of high order methods being used in CFD, namely the weighted essentially non-oscillatory (WENO) finite difference methods, the WENO finite volume methods, and the discontinuous Galerkin (DG) finite element methods. We summarize the main features of these methods, from a practical user's point of view, indicate their applicability and relative strength, and show a few selected numerical examples to demonstrate their performance on illustrative model CFD problems. 相似文献
9.
Michele Napolitano 《国际流体数值方法杂志》1984,4(12):1101-1115
The present paper provides an improved alternating direction implicit (ADI) technique as well as high-order-accurate spline ADI method for the numerical solution of steady two-dimensional incompressible viscous flow problems. The vorticity-stream function Navier-Stokes equations are considered in a general curvilinear coordinate system, which maps an arbitrary two-dimensional flow domain in the physical plane into a rectangle in the computational plane. The stream function equation is parabolized in time by means of a relaxation-like time derivative and the steady state solution is obtained by a time-marching ADI method requiring to solve only 2 × 2 block-tridiagonal linear systems. The difference equations are written in incremental form; upwind differences are used for the incremental variables, for stability, whereas central differences approximate the non-incremental terms, for accuracy, so that, at convergence, the solution is free of numerical viscosity and second-order accurate. The high-order-accurate spline ADI technique proceeds in the same manner; in addition, at the end of each two-sweep ADI cycle, the solution is corrected by means of a fifth-order spline interpolating polynomial along each row and column of the computational grid, explicitly. The validity and the efficiency of the present methods are demonstrated by means of three test problems. 相似文献
10.
The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, staggered bundles of cylinders. Pitch to diameter ratios of 1·5 and 2·0 are considered for cylinders in equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a Prandtl number of 0·7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data. 相似文献
11.
Thomas J. R. Hughes 《国际流体数值方法杂志》1987,7(11):1261-1275
SUPG methods were originally developed for the scalar advection-diffusion equation and the incompressible Navier-Stokes equations. In the last few years successful extensions have been made to symmetric advective-diffusive systems and, in particular, the compressible Euler and Navier-Stokes equations. New procedures have been introduced to improve resolution of discontinuities and thin layers. In this paper a brief overview is presented of recent progress in the development and understanding of SUPG methods. 相似文献