首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The members of a set of conditional probability density functions are called compatible if there exists a joint probability density function that generates them. We generalize this concept by calling the conditionals functionally compatible if there exists a non-negative function that behaves like a joint density as far as generating the conditionals according to the probability calculus, but whose integral over the whole space is not necessarily finite. A necessary and sufficient condition for functional compatibility is given that provides a method of calculating this function, if it exists. A Markov transition function is then constructed using a set of functionally compatible conditional densities and it is shown, using the compatibility results, that the associated Markov chain is positive recurrent if and only if the conditionals are compatible. A Gibbs Markov chain, constructed via “Gibbs conditionals” from a hierarchical model with an improper posterior, is a special case. Therefore, the results of this article can be used to evaluate the consequences of applying the Gibbs sampler when the posterior's impropriety is unknown to the user. Our results cannot, however, be used to detect improper posteriors. Monte Carlo approximations based on Gibbs chains are shown to have undesirable limiting behavior when the posterior is improper. The results are applied to a Bayesian hierarchical one-way random effects model with an improper posterior distribution. The model is simple, but also quite similar to some models with improper posteriors that have been used in conjunction with the Gibbs sampler in the literature.  相似文献   

2.
In this paper, we propose an original approach to the solution of Fredholm equations of the second kind. We interpret the standard Von Neumann expansion of the solution as an expectation with respect to a probability distribution defined on a union of subspaces of variable dimension. Based on this representation, it is possible to use trans-dimensional Markov chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approximate the solution numerically. This can be an attractive alternative to standard Sequential Importance Sampling (SIS) methods routinely used in this context. To motivate our approach, we sketch an application to value function estimation for a Markov decision process. Two computational examples are also provided.  相似文献   

3.
In many applications of Markov chains, and especially in Markov chain Monte Carlo algorithms, the rate of convergence of the chain is of critical importance. Most techniques to establish such rates require bounds on the distribution of the random regeneration time T that can be constructed, via splitting techniques, at times of return to a “small set” C satisfying a minorisation condition P(x,·)(·), xC. Typically, however, it is much easier to get bounds on the time τC of return to the small set itself, usually based on a geometric drift function , where . We develop a new relationship between T and τC, and this gives a bound on the tail of T, based on ,λ and b, which is a strict improvement on existing results. When evaluating rates of convergence we see that our bound usually gives considerable numerical improvement on previous expressions.  相似文献   

4.
Gibbs samplers derived under different parametrizations of the target density can have radically different rates of convergence. In this article, we specify conditions under which reparametrization leaves the convergence rate of a Gibbs chain unchanged. An example illustrates how these results can be exploited in convergence rate analyses.  相似文献   

5.
In this paper we determine the asymptotically efficient change of intensity for some problems of Monte Carlo simulation involving a finite state continuous time Markov process. Firstly, the computation of probabilities of large deviations of empirical averages from their asymptotic mean; second, the computation of probabilities of crossing a large level for the corresponding additive process. We are motivated by the study of overflows in a buffer whose input is modeled as a Markov fluid.  相似文献   

6.
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis–Hastings and delayed-acceptance (DA) MCMC. Our ordering implies that IS is guaranteed to be competitive up to a factor depending on the supremum of the (marginal) IS weight. We elaborate upon the criterion in case of unbiased estimators as part of an auxiliary variable framework. We show how the criterion implies asymptotic variance guarantees for IS in terms of pseudo-marginal (PM) and DA corrections, essentially if the ratio of exact and approximate likelihoods is bounded. We also show that convergence of the IS chain can be less affected by unbounded high-variance unbiased estimators than PM and DA chains.  相似文献   

7.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

8.
In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.  相似文献   

9.
Poisson change-point models have been widely used for modelling inhomogeneous time-series of count data. There are a number of methods available for estimating the parameters in these models using iterative techniques such as MCMC. Many of these techniques share the common problem that there does not seem to be a definitive way of knowing the number of iterations required to obtain sufficient convergence. In this paper, we show that the Gibbs sampler of the Poisson change-point model is geometrically ergodic. Establishing geometric ergodicity is crucial from a practical point of view as it implies the existence of a Markov chain central limit theorem, which can be used to obtain standard error estimates. We prove that the transition kernel is a trace-class operator, which implies geometric ergodicity of the sampler. We then provide a useful application of the sampler to a model for the quarterly driver fatality counts for the state of Victoria, Australia.  相似文献   

10.
Implementations of the Monte Carlo EM Algorithm   总被引:1,自引:0,他引:1  
The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where the expectation in the E-step is computed numerically through Monte Carlo simulations. The most exible and generally applicable approach to obtaining a Monte Carlo sample in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC) routines such as the Gibbs and Metropolis–Hastings samplers. Although MCMC estimation presents a tractable solution to problems where the E-step is not available in closed form, two issues arise when implementing this MCEM routine: (1) how do we minimize the computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte Carlo sample size? We address the first question through an application of importance sampling whereby samples drawn during previous EM iterations are recycled rather than running an MCMC sampler each MCEM iteration. The second question is addressed through an application of regenerative simulation. We obtain approximate independent and identical samples by subsampling the generated MCMC sample during different renewal periods. Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular, we apply an automated rule for increasing the Monte Carlo sample size when the Monte Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM algorithm through analyses of two datasets fit by generalized linear mixed models. As a part of these applications, we demonstrate the improvement in computational cost and efficiency of our routine over alternative MCEM strategies.  相似文献   

11.
This article proposes a method for approximating integrated likelihoods in finite mixture models. We formulate the model in terms of the unobserved group memberships, z, and make them the variables of integration. The integral is then evaluated using importance sampling over the z. We propose an adaptive importance sampling function which is itself a mixture, with two types of component distributions, one concentrated and one diffuse. The more concentrated type of component serves the usual purpose of an importance sampling function, sampling mostly group assignments of high posterior probability. The less concentrated type of component allows for the importance sampling function to explore the space in a controlled way to find other, unvisited assignments with high posterior probability. Components are added adaptively, one at a time, to cover areas of high posterior probability not well covered by the current importance sampling function. The method is called incremental mixture importance sampling (IMIS).

IMIS is easy to implement and to monitor for convergence. It scales easily for higher dimensional mixture distributions when a conjugate prior is specified for the mixture parameters. The simulated values on which the estimate is based are independent, which allows for straightforward estimation of standard errors. The self-monitoring aspects of the method make it easier to adjust tuning parameters in the course of estimation than standard Markov chain Monte Carlo algorithms. With only small modifications to the code, one can use the method for a wide variety of mixture distributions of different dimensions. The method performed well in simulations and in mixture problems in astronomy and medical research.  相似文献   

12.
It is common to subsample Markov chain output to reduce the storage burden. Geyer shows that discarding k ? 1 out of every k observations will not improve statistical efficiency, as quantified through variance in a given computational budget. That observation is often taken to mean that thinning Markov chain Monte Carlo (MCMC) output cannot improve statistical efficiency. Here, we suppose that it costs one unit of time to advance a Markov chain and then θ > 0 units of time to compute a sampled quantity of interest. For a thinned process, that cost θ is incurred less often, so it can be advanced through more stages. Here, we provide examples to show that thinning will improve statistical efficiency if θ is large and the sample autocorrelations decay slowly enough. If the lag ? ? 1 autocorrelations of a scalar measurement satisfy ρ? > ρ? + 1 > 0, then there is always a θ < ∞ at which thinning becomes more efficient for averages of that scalar. Many sample autocorrelation functions resemble first order AR(1) processes with ρ? = ρ|?| for some ? 1 < ρ < 1. For an AR(1) process, it is possible to compute the most efficient subsampling frequency k. The optimal k grows rapidly as ρ increases toward 1. The resulting efficiency gain depends primarily on θ, not ρ. Taking k = 1 (no thinning) is optimal when ρ ? 0. For ρ > 0, it is optimal if and only if θ ? (1 ? ρ)2/(2ρ). This efficiency gain never exceeds 1 + θ. This article also gives efficiency bounds for autocorrelations bounded between those of two AR(1) processes. Supplementary materials for this article are available online.  相似文献   

13.
In this article, we explain how the importance sampling technique can be generalized from simulating expectations to computing the initial value of backward stochastic differential equations (SDEs) with Lipschitz continuous driver. By means of a measure transformation we introduce a variance reduced version of the forward approximation scheme by Bender and Denk [4 Bender , C. , and Denk , R. 2007 . A forward scheme for backward SDEs . Stochastic Processes and their Applications 117 ( 12 ): 17931812 . [Google Scholar]] for simulating backward SDEs. A fully implementable algorithm using the least-squares Monte Carlo approach is developed and its convergence is proved. The success of the generalized importance sampling is illustrated by numerical examples in the context of Asian option pricing under different interest rates for borrowing and lending.  相似文献   

14.
Abstract

The so-called “Rao-Blackwellized” estimators proposed by Gelfand and Smith do not always reduce variance in Markov chain Monte Carlo when the dependence in the Markov chain is taken into account. An illustrative example is given, and a theorem characterizing the necessary and sufficient condition for such an estimator to always reduce variance is proved.  相似文献   

15.
本文首先叙述了基于单调关联故障树模型成败型仿真的重要性抽样的基本原理,然后通过设计几种执行重要性抽样的试验方案,总结得到了在实践中执行重要性抽样若干有益的规则,最后的小结简述了似然比的概念在仿真研究中的重要应用。  相似文献   

16.
Regeneration is a useful tool in Markov chain Monte Carlo simulation because it can be used to side-step the burn-in problem and to construct better estimates of the variance of parameter estimates themselves. It also provides a simple way to introduce adaptive behavior into a Markov chain, and to use parallel processors to build a single chain. Regeneration is often difficult to take advantage of because, for most chains, no recurrent proper atom exists, and it is not always easy to use Nummelin's splitting method to identify regeneration times. This article describes a constructive method for generating a Markov chain with a specified target distribution and identifying regeneration times. As a special case of the method, an algorithm which can be “wrapped” around an existing Markov transition kernel is given. In addition, a specific rule for adapting the transition kernel at regeneration times is introduced, which gradually replaces the original transition kernel with an independence-sampling Metropolis-Hastings kernel using a mixture normal approximation to the target density as its proposal density. Computational gains for the regenerative adaptive algorithm are demonstrated in examples.  相似文献   

17.
Suppose we observe a stationary Markov chain with unknown transition distribution. The empirical estimator for the expectation of a function of two successive observations is known to be efficient. For reversible Markov chains, an appropriate symmetrization is efficient. For functions of more than two arguments, these estimators cease to be efficient. We determine the influence function of efficient estimators of expectations of functions of several observations, both for completely unknown and for reversible Markov chains. We construct simple efficient estimators in both cases.  相似文献   

18.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

19.
The pseudo likelihood method of Besag (1974) has remained a popular method for estimating Markov random field on a very large lattice, despite various documented deficiencies. This is partly because it remains the only computationally tractable method for large lattices. We introduce a novel method to estimate Markov random fields defined on a regular lattice. The method takes advantage of conditional independence structures and recursively decomposes a large lattice into smaller sublattices. An approximation is made at each decomposition. Doing so completely avoids the need to compute the troublesome normalizing constant. The computational complexity is O(N), where N is the number of pixels in the lattice, making it computationally attractive for very large lattices. We show through simulations, that the proposed method performs well, even when compared with methods using exact likelihoods. Supplementary material for this article is available online.  相似文献   

20.
We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modeled using a decomposable graphical model. We propose an efficient Markov chain Monte Carlo algorithm relying on a parameter expansion scheme to sample from the resulting posterior distribution. This algorithm updates the correlation matrix within a simple Gibbs sampling framework and allows us to infer the correlation structure from the data, generalizing methods used for inference in decomposable Gaussian graphical models to multivariate binary observations. We demonstrate the performance of this model and of the Markov chain Monte Carlo algorithm on simulated and real datasets. This article has online supplementary materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号