首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
Multicanonical MCMC (Multicanonical Markov Chain Monte Carlo; Multicanonical Monte Carlo) is discussed as a method of rare event sampling. Starting from a review of the generic framework of importance sampling, multicanonical MCMC is introduced, followed by applications in random matrices, random graphs, and chaotic dynamical systems. Replica exchange MCMC (also known as parallel tempering or Metropolis-coupled MCMC) is also explained as an alternative to multicanonical MCMC. In the last section, multicanonical MCMC is applied to data surrogation; a successful implementation in surrogating time series is shown. In the appendix, calculation of averages and normalizing constant in an exponential family, phase coexistence, simulated tempering, parallelization, and multivariate extensions are discussed.  相似文献   

2.
Parallel tempering is a generic Markov chain Monte Carlo sampling method which allows good mixing with multimodal target distributions, where conventional Metropolis-Hastings algorithms often fail. The mixing properties of the sampler depend strongly on the choice of tuning parameters, such as the temperature schedule and the proposal distribution used for local exploration. We propose an adaptive algorithm with fixed number of temperatures which tunes both the temperature schedule and the parameters of the random-walk Metropolis kernel automatically. We prove the convergence of the adaptation and a strong law of large numbers for the algorithm under general conditions. We also prove as a side result the geometric ergodicity of the parallel tempering algorithm. We illustrate the performance of our method with examples. Our empirical findings indicate that the algorithm can cope well with different kinds of scenarios without prior tuning. Supplementary materials including the proofs and the Matlab implementation are available online.  相似文献   

3.
Importance sampling methods can be iterated like MCMC algorithms, while being more robust against dependence and starting values. The population Monte Carlo principle consists of iterated generations of importance samples, with importance functions depending on the previously generated importance samples. The advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus be stopped at any time, while iterations improve the performances of the importance function, thus leading to an adaptive importance sampling. We illustrate this method on a mixture example with multiscale importance functions. A second example reanalyzes the ion channel model using an importance sampling scheme based on a hidden Markov representation, and compares population Monte Carlo with a corresponding MCMC algorithm.  相似文献   

4.
Probabilistic programming is an area of research that aims to develop general inference algorithms for probabilistic models expressed as probabilistic programs whose execution corresponds to inferring the parameters of those models. In this paper, we introduce a probabilistic programming language (PPL) based on abductive logic programming for performing inference in probabilistic models involving categorical distributions with Dirichlet priors. We encode these models as abductive logic programs enriched with probabilistic definitions and queries, and show how to execute and compile them to boolean formulas. Using the latter, we perform generalized inference using one of two proposed Markov Chain Monte Carlo (MCMC) sampling algorithms: an adaptation of uncollapsed Gibbs sampling from related work and a novel collapsed Gibbs sampling (CGS). We show that CGS converges faster than the uncollapsed version on a latent Dirichlet allocation (LDA) task using synthetic data. On similar data, we compare our PPL with LDA-specific algorithms and other PPLs. We find that all methods, except one, perform similarly and that the more expressive the PPL, the slower it is. We illustrate applications of our PPL on real data in two variants of LDA models (Seed and Cluster LDA), and in the repeated insertion model (RIM). In the latter, our PPL yields similar conclusions to inference with EM for Mallows models.  相似文献   

5.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

6.
We investigate the use of adaptive MCMC algorithms to automatically tune the Markov chain parameters during a run. Examples include the Adaptive Metropolis (AM) multivariate algorithm of Haario, Saksman, and Tamminen (2001), Metropolis-within-Gibbs algorithms for nonconjugate hierarchical models, regionally adjusted Metropolis algorithms, and logarithmic scalings. Computer simulations indicate that the algorithms perform very well compared to nonadaptive algorithms, even in high dimension.  相似文献   

7.
In recent years, the Hamiltonian Monte Carlo (HMC) algorithm has been found to work more efficiently compared to other popular Markov chain Monte Carlo (MCMC) methods (such as random walk Metropolis–Hastings) in generating samples from a high-dimensional probability distribution. HMC has proven more efficient in terms of mixing rates and effective sample size than previous MCMC techniques, but still may not be sufficiently fast for particularly large problems. The use of GPUs promises to push HMC even further greatly increasing the utility of the algorithm. By expressing the computationally intensive portions of HMC (the evaluations of the probability kernel and its gradient) in terms of linear or element-wise operations, HMC can be made highly amenable to the use of graphics processing units (GPUs). A multinomial regression example demonstrates the promise of GPU-based HMC sampling. Using GPU-based memory objects to perform the entire HMC simulation, most of the latency penalties associated with transferring data from main to GPU memory can be avoided. Thus, the proposed computational framework may appear conceptually very simple, but has the potential to be applied to a wide class of hierarchical models relying on HMC sampling. Models whose posterior density and corresponding gradients can be reduced to linear or element-wise operations are amenable to significant speed ups through the use of GPUs. Analyses of datasets that were previously intractable for fully Bayesian approaches due to the prohibitively high computational cost are now feasible using the proposed framework.  相似文献   

8.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

9.
The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-dimensional target distributions. In contrast with standard Markov chain Monte Carlo (MCMC) algorithms, it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour for the simulated trajectories. However, similarly to algorithms based on random walk or Langevin proposals, the number of steps required to explore the target distribution typically grows with the dimension of the state space. We define a generalized HMC algorithm which overcomes this problem for target measures arising as finite-dimensional approximations of measures π which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert space. The key idea is to construct an MCMC method which is well defined on the Hilbert space itself.We successively address the following issues in the infinite-dimensional setting of a Hilbert space: (i) construction of a probability measure Π in an enlarged phase space having the target π as a marginal, together with a Hamiltonian flow that preserves Π; (ii) development of a suitable geometric numerical integrator for the Hamiltonian flow; and (iii) derivation of an accept/reject rule to ensure preservation of Π when using the above numerical integrator instead of the actual Hamiltonian flow. Experiments are reported that compare the new algorithm with standard HMC and with a version of the Langevin MCMC method defined on a Hilbert space.  相似文献   

10.
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the Expectation–Maximization algorithm. A suitable number of components is then determined conventionally by comparing different mixture models using penalized log-likelihood criteria such as Bayesian information criterion. We propose fitting MLMMs with variational methods, which can perform parameter estimation and model selection simultaneously. We describe a variational approximation for MLMMs where the variational lower bound is in closed form, allowing for fast evaluation and develop a novel variational greedy algorithm for model selection and learning of the mixture components. This approach handles algorithm initialization and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparameterize the model and show empirically that there is a gain in efficiency in variational algorithms similar to that in Markov chain Monte Carlo (MCMC) algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler, which suggests that reparameterizations can lead to improved convergence in variational algorithms just as in MCMC algorithms. Supplementary materials for the article are available online.  相似文献   

11.
Consider the two problems of simulating observations and estimating expectations and normalizing constants for multiple distributions. First, we present a self-adjusted mixture sampling method, which accommodates both adaptive serial tempering and a generalized Wang–Landau algorithm. The set of distributions are combined into a labeled mixture, with the mixture weights depending on the initial estimates of log normalizing constants (or free energies). Then, observations are generated by Markov transitions, and free energy estimates are adjusted online by stochastic approximation. We propose two stochastic approximation schemes by Rao–Blackwellization of the scheme commonly used, and derive the optimal choice of a gain matrix, resulting in the minimum asymptotic variance for free energy estimation, in a simple and feasible form. Second, we develop an offline method, locally weighted histogram analysis, for estimating free energies and expectations, using all the simulated data from multiple distributions by either self-adjusted mixture sampling or other sampling algorithms. This method can be computationally much faster, with little sacrifice of statistical efficiency, than a global method currently used, especially when a large number of distributions are involved. We provide both theoretical results and numerical studies to demonstrate the advantages of the proposed methods.  相似文献   

12.
Markov Chain Monte Carlo (MCMC) algorithms play an important role in statistical inference problems dealing with intractable probability distributions. Recently, many MCMC algorithms such as Hamiltonian Monte Carlo (HMC) and Riemannian Manifold HMC have been proposed to provide distant proposals with high acceptance rate. These algorithms, however, tend to be computationally intensive which could limit their usefulness, especially for big data problems due to repetitive evaluations of functions and statistical quantities that depend on the data. This issue occurs in many statistic computing problems. In this paper, we propose a novel strategy that exploits smoothness (regularity) in parameter space to improve computational efficiency of MCMC algorithms. When evaluation of functions or statistical quantities are needed at a point in parameter space, interpolation from precomputed values or previous computed values is used. More specifically, we focus on HMC algorithms that use geometric information for faster exploration of probability distributions. Our proposed method is based on precomputing the required geometric information on a set of grids before running sampling algorithm and approximating the geometric information for the current location of the sampler using the precomputed information at nearby grids at each iteration of HMC. Sparse grid interpolation method is used for high dimensional problems. Tests on computational examples are shown to illustrate the advantages of our method.  相似文献   

13.
Exact conditional goodness-of-fit tests for discrete exponential family models can be conducted via Monte Carlo estimation of p values by sampling from the conditional distribution of multiway contingency tables. The two most popular methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential importance sampling (SIS). In this work we consider various ways to hybridize the two schemes and propose one standout strategy as a good general purpose method for conducting inference. The proposed method runs many parallel chains initialized at SIS samples across the fiber. When a Markov basis is unavailable, the proposed scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by the MCMC and SIS schemes individually while largely retaining their strengths. It also provides diagnostics that guide and lend credibility to the procedure. Simulations demonstrate the viability of the approach.  相似文献   

14.
Inference for spatial generalized linear mixed models (SGLMMs) for high-dimensional non-Gaussian spatial data is computationally intensive. The computational challenge is due to the high-dimensional random effects and because Markov chain Monte Carlo (MCMC) algorithms for these models tend to be slow mixing. Moreover, spatial confounding inflates the variance of fixed effect (regression coefficient) estimates. Our approach addresses both the computational and confounding issues by replacing the high-dimensional spatial random effects with a reduced-dimensional representation based on random projections. Standard MCMC algorithms mix well and the reduced-dimensional setting speeds up computations per iteration. We show, via simulated examples, that Bayesian inference for this reduced-dimensional approach works well both in terms of inference as well as prediction; our methods also compare favorably to existing “reduced-rank” approaches. We also apply our methods to two real world data examples, one on bird count data and the other classifying rock types. Supplementary material for this article is available online.  相似文献   

15.
Some posterior distributions lead to Markov chain Monte Carlo (MCMC) chains that are naturally viewed as collections of subchains. Examples include mixture models, regime-switching models, and hidden Markov models. We obtain MCMC-based estimators of posterior expectations by combining different subgroup (subchain) estimators using stratification and poststratification methods. Variance estimates of the limiting distributions of such estimators are developed. Based on these variance estimates, we propose a test statistic to aid in the assessment of convergence and mixing of chains. We compare our diagnostic with other commonly used methods. The approach is illustrated in two examples: a latent variable model for arsenic concentration in public water systems in Arizona and a Bayesian hierarchical model for Pacific sea surface temperatures. Supplementary materials, which include MATLAB codes for the proposed method, are available online.  相似文献   

16.
Label switching is a well-known phenomenon that occurs in MCMC outputs targeting the parameters’ posterior distribution of many latent variable models. Although its appearence is necessary for the convergence of the simulated Markov chain, it turns out to be a problem in the estimation procedure. In a recent paper, Papastamoulis and Iliopoulos (J Comput Graph Stat 19:313–331, 2010) introduced the Equivalence Classes Representatives (ECR) algorithm as a solution of this problem in the context of finite mixtures of distributions. In this paper, label switching is considered under a general missing data model framework that includes as special cases finite mixtures, hidden Markov models, and Markov random fields. The use of ECR algorithm is extended to this general framework and is shown that the relabelled sequence which it produces converges to its target distribution at the same rate as the Random Permutation Sampler of Frühwirth-Schnatter (2001) and that both converge at least as fast as the Markov chain generated by the original MCMC output.  相似文献   

17.
We study MCMC algorithms for Bayesian analysis of a linear regression model with generalized hyperbolic errors. The Markov operators associated with the standard data augmentation algorithm and a sandwich variant of that algorithm are shown to be trace-class.  相似文献   

18.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

19.
In recent years, parallel processing has become widely available to researchers. It can be applied in an obvious way in the context of Monte Carlo simulation, but techniques for “parallelizing” Markov chain Monte Carlo (MCMC) algorithms are not so obvious, apart from the natural approach of generating multiple chains in parallel. Although generation of parallel chains is generally the easiest approach, in cases where burn-in is a serious problem, it is often desirable to use parallelization to speed up generation of a single chain. This article briefly discusses some existing methods for parallelization of MCMC algorithms, and proposes a new “pre-fetching” algorithm to parallelize generation of a single chain.  相似文献   

20.
Two noniterative algorithms for computing posteriors   总被引:1,自引:0,他引:1  
In this paper, we first propose a noniterative sampling method to obtain an i.i.d. sample approximately from posteriors by combining the inverse Bayes formula, sampling/importance resampling and posterior mode estimates. We then propose a new exact algorithm to compute posteriors by improving the PMDA-Exact using the sampling-wise IBF. If the posterior mode is available from the EM algorithm, then these two algorithms compute posteriors well and eliminate the convergence problem of Markov Chain Monte Carlo methods. We show good performances of our methods by some examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号