首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
This paper presents an adjoint method for the optimum shape design of unsteady flows. The goal is to develop a set of discrete unsteady adjoint equations and the corresponding boundary condition for the non-linear frequency domain method. First, this paper presents the complete formulation of the time dependent optimal design problem. Second, we present the non-linear frequency domain adjoint equations for three-dimensional flows. Third, we present results that demonstrate the application of the theory to a three-dimensional wing.  相似文献   

2.
Explicit expressions are presented that describe the input–output behaviour of a non-linear system in both the frequency and the time domain. The expressions are based on a set of coefficients that do not depend on the input to the system and are universal for a given system. The anharmonic oscillator is chosen as an example and is discussed for different choices of its physical parameters. It is shown that the typical approach for the determination of the Volterra Series representation is not valid for the important case when the non-linear system exhibits oscillatory behaviour and the input has a pole at the origin (in the frequency domain), e.g. the unit-step function. For this case, resonant effects arise and the analysis requires additional care.  相似文献   

3.
A new method for time domain simulation of cross-flow vortex-induced vibrations of slender circular cylindrical structures is developed. A model for the synchronization between the lift force and structure motion is derived from already established data for the cross-flow excitation coefficient. The proposed model is tested by numerical simulations, and the results are compared to experimental observations. When a sinusoidal cross-flow motion is given as input to the algorithm, the generated force time series are generally in good agreement with experimental measurements of cross-flow force in phase with cylinder velocity and acceleration. The model is also utilized in combination with time integration of the equation of motion to simulate the cross-flow vibration of a rigid cylinder. The resulting amplitude and frequency of motion as functions of reduced velocity are compared to published experimental results. In combination with the finite element method, the model is used to simulate cross-flow vibrations of a flexible cylinder in shear flow. Comparison with experiments shows that the model is capable of reproducing important quantities such as frequency, mode and amplitude, although some discrepancies are seen. This must be expected due to the complexity of the problem and the simple form of the present method.  相似文献   

4.
Venanico-Filho et al. developed an elegant matrix formulation for dynamic analysis by frequency domain (FD), but the convergence, causality and extended period need further refining. In the present paper, it was argued that: (1) under reasonable assumptions (approximating the frequency response function by the discrete Fourier transform of the discretized unitary impulse response function), the matrix formulation by FD is equivalent to a circular convolution; (2) to avoid the wraparound interference, the excitation vector and impulse response must be padded with enough zeros; (3) provided that the zero padding requirement satisfied, the convergence and accuracy of direct time domain analysis, which is equivalent to that by FD, are guaranteed by the numerical integration scheme; (4) the imaginary part of the computational response approaching zero is due to the continuity of the impulse response functions. The English text was polished by Yunming Chen  相似文献   

5.
The general context of this paper is to support the design of spillways by a direct mathematical approach instead of trial-and-error methods. First, a two-dimensional model is formulated to determine the free surface and the discharge for a stationary, incompressible, homogeneous, non-viscous and irrotational flow over a fixed spillway. The flow satisfies the Laplace equation and the Bernoulli equation (potential flow). An important feature of the model is that it can be extended to design the spillway structure when the spillway is not fixed but the pressure on the spillway is described by a cavitation criterion. Next, the continuous model is discretized by the boundary element method (BEM). We use a non-linear programming algorithm to calculate the pressures and the shape of the spillway. A computer-aided design package is developed on a PC using the equations describing the free surface, the BEM and standard optimization techniques. The input and output of the model are realized using graphical routines. Finally, we discuss the convergence and the computation time of the algorithms.  相似文献   

6.
Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.  相似文献   

7.
This paper focuses on the further development of a previously published semi-empirical method for time domain simulation of vortex-induced vibrations (VIV). A new hydrodynamic damping formulation is given, and the necessary coefficients are found from experimental data. It is shown that the new model predicts the observed hydrodynamic damping in still water and for cross-flow oscillations in stationary incoming flow with high accuracy. Next, the excitation force model, which is one component of the total hydrodynamic force model, is optimized by simulating the VIV response of an elastic cylinder in a series of experiments with stationary flow. The optimization is performed by repeating the simulations until the best possible agreement with the experiments is found. The optimized model is then applied to simulate the cross-flow VIV of an elastic cylinder in oscillating flow, without introducing any changes to the hydrodynamic force modeling. By comparison with experiment, it is shown that the model predicts the frequency content, mode and amplitude of vibration with a high level of realism, and the amplitude modulations occurring at high Keulegan–Carpenter numbers are well captured. The model is also utilized to investigate the effect of increasing the maximum reduced velocity and the mass ratio of the elastic cylinder in oscillating flow. Simulations show that complex response patterns with multiple modes and frequencies appear when the maximum reduced velocity is increased. If, however, the mass ratio is increased by a factor of 5, a single mode dominates. This illustrates that, in oscillating flows, the mass ratio is important in determining the mode participation at high maximum reduced velocities.  相似文献   

8.
Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.  相似文献   

9.
A survey is presented concerning fixed domain methods used to solve mathematical models of free and moving boundary flow problems in porous media. These include the following: variational inequality or quasi-variational inequality formulations; general inequality formulations which have been set and solved in fixed domains; and the residual flow procedure. Finally, some parallel computing methods and mesh adaptation methods are discussed to demonstrate how these fixed domain formulations can be solved with current technology.The fixed domain methods that are referenced herein can be classified into two groups: the variational inequality method and the extended pressure head method. Baiocchi was the first to apply the variational inequality method to free boundary problems of flows through porous media. This method in general also uses an extension of the pressure head but adds an application of an integral transformation (a Baiocchi transformation) to the problem. The method possesses a beautiful mathematical structure for its theory and yields simple numerical solution algorithms. However, application of the method is difficult if not impossible in some cases depending upon the regularity of the seepage domain.The extended pressure head method is based on the concept that the pressure is extended smoothly across the free or moving boundary into the unsaturated region from the flow domain. The extension of the pressure head to the entire porous medium yields an extended coefficient of permeability of the medium which is equal to the saturated coefficient in the seepage region and is equal to zero or some small value (for computational purposes) in the unsaturated region.  相似文献   

10.
In this paper,a new analytical method of symplectic system.Hamiltonian system,is introduced for solving the problem of the Stokes flow in a two-dimensional rectangular domain.In the system,the fundamental problem is reduced to all eigenvalue and eigensolution problem.The solution and boundary conditions call be expanded by eigensolutions using ad.ioint relationships of the symplectic ortho-normalization between the eigensolutions.A closed method of the symplectic eigensolution is presented based on completeness of the symplectic eigensolution space.The results show that fundamental flows can be described by zero eigenvalue eigensolutions,and local effects by nonzero eigenvalue eigensolutions.Numerical examples give various flows in a rectangular domain and show effectivenees of the method for solving a variety of problems.Meanwhile.the method can be used in solving other problems.  相似文献   

11.
In this paper, a new analytical method of symplectic system, Hamiltonian system, is introduced for solving the problem of the Stokes flow in a two-dimensional rectangular domain. In the system, the fundamental problem is reduced to an eigenvalue and eigensolution problem. The solution and boundary conditions can be expanded by eigensolutions using adjoint relationships of the symplectic ortho-normalization between the eigensolutions. A closed method of the symplectic eigensolution is presented based on completeness of the symplectic eigensolution space. The results show that fundamental flows can be described by zero eigenvalue eigensolutions, and local effects by nonzero eigenvalue eigensolutions. Numerical examples give various flows in a rectangular domain and show effectiveness of the method for solving a variety of problems. Meanwhile, the method can be used in solving other problems.  相似文献   

12.
对于不同非定常流动问题, 采用合适的时间离散方法,可有效提高数值精度和计算效率. 本文在总结传统时间离散方法的基础上,对近些年发展的非线性频域法、谐波平衡法、经典时间谱方法、时间谱元法、时间有限差分法等进行了系统地总结.根据离散形式的不同,将上述方法分为时域推进法、频域谐波法、时域配点法和混合方法4大类.首先简要介绍了各类方法的数学思想以及研究进展,并重点比较了(准)周期性非定常流动计算中各方法的精度、效率以及适用范围.然后, 对各种时间离散格式的特点进行总结,并就不同的非定常流动问题如何选择合适的时间离散方法给予了建议.最后, 对这些新型时间离散格式在工程中的应用进行了简要介绍,并对其发展方向进行展望.  相似文献   

13.
提出了一种将有限元和差分线法相结合求解无穷域势流问题的算法。用两同心圆将求解域划分为存在重叠的有限和无限两个区域,在有限和无限域上分别用有限元和差分线法求解Laplace方程边值问题。用差分线法推导出的关系式修正有限元方程,求解该方程组从而得到原问题的解。本算法将求解无穷域问题转化为代数特征值问题和有限域内线性方程组的...  相似文献   

14.
This paper presents an adjoint method for the calculation of remote sensitivities in supersonic flow. The goal is to develop a set of discrete adjoint equations and their corresponding boundary conditions in order to quantify the influence of geometry modifications on the pressure distribution at an arbitrary location within the domain of interest. First, this paper presents the complete formulation and discretization of the discrete adjoint equations. The special treatment of the adjoint boundary condition to obtain remote sensitivities or sensitivities of pressure distributions at points remotely located from the wing surface are discussed. Secondly, we present results that demonstrate the application of the theory to a three-dimensional remote inverse design problem using a low sweep biconvex wing and a highly swept blunt leading edge wing. Lastly, we present results that establish the added benefit of using an objective function that contains the sum of the remote inverse and drag minimization cost functions.  相似文献   

15.
管网系统抗震优化设计的正交枚举法   总被引:1,自引:0,他引:1  
在管网系统总投资限额条件下,以系统抗震可靠度最大为优化目标,进行管网系统的抗震优化设计。根据管网系统的功能要求,设计特点及单元重要性分析,将系统优化变量转化为较少的离散变量,并利用正交枚举法进行简化计算,从而避免了大规模非线性规划求解的困难。  相似文献   

16.
The time accuracy of the exponentially accu-rate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward differ-ence formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical com-putations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth sub-sonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the predic-tion of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.  相似文献   

17.
The performance of flat fins for tube-fin heat exchangers has been analyzed for both inline and staggered arrangement of tubes. In earlier published studies, regular square and equilateral triangular array tube layouts were considered. No such restriction is put in the present study. The analysis has been done by a semi-analytical technique where the boundary condition at the fin edge is discretely satisfied at a large number of points by a method of collocation. It has also been demonstrated that the approximate results obtained by the sector method closely agree with the prediction of semi-analytical technique. Finally, a generalized scheme of optimization based on Lagrange multiplier technique has been suggested which shows that irrespective of the volume and thickness of the fins, square and equilateral triangular array of tubes are the optimum layout for inline and staggered arrangements, respectively. This result was known so far only intuitively. The optimum dimensions for flat fins for other layout of tubes have also been obtained specifying the ratio of longitudinal to transverse tube pitch.  相似文献   

18.
自由面势流问题的域外奇点边界元法及其数值误差分析   总被引:3,自引:0,他引:3  
高高 《计算力学学报》2003,20(3):339-345
讨论了域外奇点边界元法在自由面势流问题计算中的作用,并以连续及离散Fourier分析对该方法(就m阶面元的一般情况)进行数值误差分析,导出了计及面元阶数、奇点至自由面垂向距离、配置点移动、差分格式等因素影响的数值误差一般表达式。从理论上证明了自由面势流问题计算中采用域外奇点法可改善离散产生的数值色散误差并能结合配置点前移(向上游)等方法以数值满足辐射条件。  相似文献   

19.
A new numerical method called high accuracy time and space transform method (TSTM) is introduced to solve the advection–diffusion equation in an unbounded domain. By a spatial transform, the advection–diffusion equation in the unbounded domain Rn is converted to one on the bounded domain [?1, 1]n, and the Laplace transform is applied to eliminate time dependency. The consequent boundary value problem is solved by collocation on Chebyshev points. To face the well‐known computational challenge represented by the numerical inversion of the Laplace transform, Talbot's method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that TSTM has exponential rate in time and space. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
杨海天  李哈汀 《应用力学学报》2012,29(2):164-169,239
为更精确地求解弹性地基薄板的动力响应,发展了一种分段时域自适应算法,通过变量在离散时段内的展开,将时空耦合的初边值问题转化为一系列递推的基于有限元(FEM)的空间问题求解,通过自适应计算保持稳定的计算精度。数值算例表明:本文解与解析解相比最大相对误差不超过3.59%;当步长较大时四阶Runge-Kutta法和Newmark法均失效,本文所提算法仍可得到满意的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号