首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Experiments on characterization of thin liquid films flowing over stationary and rotating disk surfaces are described. The thin liquid film was created by introducing deionized water from a flow collar at the center of an aluminum disk with a known initial film thickness and uniform radial velocity. Radial film thickness distribution was measured using a non-intrusive laser light interface reflection technique that enabled the measurement of the instantaneous film thickness over a finite segment of the disk. Experiments were performed for a range of flow rates between 3.0 lpm and 15.0 lpm, corresponding to Reynolds numbers based on the liquid inlet gap height and velocity between 238 and 1,188. The angular speed of the disk was varied from 0 rpm to 300 rpm. When the disk was stationary, a circular hydraulic jump was present in the liquid film. The liquid-film thickness in the subcritical region (downstream of the hydraulic jump) was an order of magnitude greater than that in the supercritical region (upstream of the hydraulic jump) which was of the order of 0.3 mm. As the Reynolds number increased, the hydraulic jump migrated toward the edge of the disk. In the case of rotation, the liquid-film thickness exhibited a maximum on the disk surface. The liquid-film inertia and friction influenced the inner region where the film thickness progressively increased. The outer region where the film thickness decreased was primarily affected by the centrifugal forces. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. At high rotational speeds, spiral waves were observed on the liquid film. It was also determined that the angle of the waves which form on the liquid surface was a function of the ratio of local radial to tangential velocity.  相似文献   

2.
The convective heat transfer between a circular free surface impinging jet and a solid surface has been studied numerically. The thin liquid film formed on the surface has been assumed to be in non-turbulent free surface flow. The effects of surface tension, viscosity, gravity and heat transfer between the film flow and the solid surface have been taken into account. The flow structure on a non-heated surface has been investigated first. Next, the steady-state flow structure in the liquid film as well as the heat transfer has been examined. The predicted results have been compared with experimental data for the purpose of validating the analysis. The hydrodynamics of the liquid film and the heat transfer processes have been investigated numerically to understand the physics of the phenomena. Received on 5 October 1998  相似文献   

3.
A numerical study has been performed to analyze nanofluids convective heat transfer. Laminar α-Al2O3-water nanofluid flows in an entrance region of a horizontal circular tube with constant surface temperature. Numerical analysis has been carried out using two different single-phase models (homogenous and dispersion) and two-phase models (Eulerian–Lagrangian and mixture). A new model is developed to consider the nanoparticles dispersion. The transport equations for the tube with constant surface temperature were solved numerically using a control volume approach. The effects of nanoparticles volume fraction (0.5, 1 %) and Reynolds number (650 ≤ Re ≤ 2300) on nanofluid convective heat transfer coefficient were studied. The results are compared with the experimental data and it is shown that the homogenous single-phase model is underestimated and the mixture model is overestimated. Although the Eulerian–Lagrangian model gives a reasonable prediction for the thermal behavior of nanofluids, the dispersion single-phase model gives more accurate prediction despite its simplicity.  相似文献   

4.
Three-dimensional flow behavior of thin liquid film that is shear-driven by turbulent air flow in a duct is measured and simulated. Its film thickness and width are reported as a function of air velocity, liquid flow rate, surface tension coefficient, and wall contact angle. The numerical component of this study is aimed at exploring and assessing the suitability of utilizing the FLUENT-CFD code and its existing components, i.e. Volume of Fluid model (VOF) along with selected turbulence model, for simulating the behavior of 3D shear-driven liquid film flow, through a comparison with measured results. The thickness and width of the shear-driven liquid film are measured using an interferometric technique that makes use of the phase shift between the reflections of incident light from the top and bottom surfaces of the thin liquid film. Such measurements are quite challenging due to the dynamic interfacial instabilities that develop in this flow. The results reveal that higher air flow velocity decreases the liquid film thickness but increases its width, while higher liquid flow rate increases both its thickness and width. Simulated results provide good estimates of the measured values, and reveal the need for considering a dynamic rather than a static wall contact angle in the model for improving the comparison with measured values.  相似文献   

5.
师晋生 《力学季刊》2006,27(4):693-698
对高粘度液体在等温正弦形波纹壁面上的自由降落与蒸发建立了摄动分析模型。得到了流动的分析解和蒸发传热的数值解。考察了壁面波纹的波幅和波数、液膜表面张力及贝克利数对流动与传热的影响,结果表明,加大波纹的波幅、适当选择波数、减小贝克利数可增强传热,而表面张力对蒸发传热的影响较小。  相似文献   

6.
A numerical investigation of the two-dimensional laminar flow around side-by-side rotating circular cylinders using Lattice Boltzmann method is conducted. The effects of variation of rotational speed ratio β and different gap spacings g* at Reynolds number of 100 are studied. A various range of rotational speed ratio 0 ≤ β ≤ 2 for four different gap spacings of 3, 1.5, 0.7 and 0.2 are investigated. Flow conditions and its characteristics, such as lift and drag coefficients and Strouhal number, is studied. The results indicated that as β increases, the flow changes its condition from periodic to steady after a critical rotational speed. Results also indicated that variation of the gap spacing and rotational speed has significant effect on wake pattern. Wake pattern in turn has significant effect on the Strouhal number. Finally, the result is compared with experimental and other numerical data.  相似文献   

7.
The multiphase heat transfer could be enhanced by creating thin liquid film on the wall. The phase separation concept is called due to the separated flow paths of liquid and gas over the tube cross section to yield thin liquid film. Our proposed heat transfer tube consists of an annular region close to the wall and a core region, interfaced by a suspending mesh cylinder in the tube. The heat transfer tube is a multiscale system with micron scale of mesh pores, miniature scale of annular region and macroscale of tube diameter and length. Great effort has been made to link from micron scale to macroscale. The Volume of Fluid (VOF) method simulates air/water two-phase flow for vertical upflow. The three-dimensional system was successfully converted to a two-dimensional one by using three equivalent criteria for mesh pores. The non-uniform base grid generation and dynamic grid adaption method capture the bubble interface. The numerical results successfully reproduce our experimental results. The numerical findings identify the following mechanisms for the enhanced heat transfer: (a) counter-current flow exists with upward flow in the annular region and downward flow in the core region; (b) void fractions are exact zero in the core region and higher in the annular region; (c) the liquid film thicknesses are decreased to 1/6–1/3 of those in the bare tube section; (d) the gas–liquid mixture travels much faster in the annular region than in the bare tube; (e) three-levels of liquid circulation exists: meter-scale bulk liquid circulation, moderate-scale liquid circulation around a single-elongated-ring-slug-bubble, and microliquid circulation following the ring-slug-bubble tails. These liquid circulations promote the fluid mixing over the whole tube length and within the radial direction. The modulated parameters of void fractions, velocities and liquid film thicknesses in the annular region and three-levels of liquid circulation are greatly beneficial for the multiphase heat transfer enhancement.  相似文献   

8.
One of the most important tasks in development of modern gas turbine combustors is the reduction of NOx emissions. An effective way to reduce the NOx emission is using the lean premixed prevaporization (LPP) concept. An important phenomenon taking place in LPP chambers is the evaporation of thin fuel films. To increase the fuel evaporation rate, the use of microstructured walls has been suggested. The wall microstructures make use of the capillary forces to evenly distribute the liquid fuel over the wall, so that the appearance of uncontrolled dry patches can be avoided. Moreover, the wall structures promote the thin film evaporation characterized by ultra-high evaporation rates. An experimental setup was built for the investigation of thin liquid films falling down on the outer surface of vertical tubes with either a smooth or structured surface. In the first testing phase water is used, fuel like liquids will be used later on. The thin film can be heated from both sides, by hot oil flowing inside the tube, and by hot compressed air flowing in co-current direction to the thin film. The film is partly evaporated along the flow. Results for the wavy film structure at different Reynolds numbers are reported. For theoretical investigations a model describing the hydrodynamics and heat transfer due to evaporation of the gravity- and shear-driven undisturbed liquid film on structured surfaces was developed. For low Reynolds numbers or low liquid mass fluxes the wall surface is only partly covered with liquid and the heat transfer is shown to be governed by the evaporation of the ultra-thin film in the vicinity of the three-phase contact line. A numerical model for the solution of a two-dimensional free-surface flow of a liquid film over a structured wall was also developed. The Navier–Stokes equations are solved using the Volume of Fluid (VOF) technique. The energy equation is included in the model. The model is verified by comparison with data from the literature showing favorable agreement. In particular, the proposed model predicts the formation of capillary waves observed in the experiments. The model is used to investigate the flow of liquid on a structured wall. This calculation is the first step towards the modeling of a three-dimensional wavy flow of a gravity- and shear-driven film along a wall with longitudinal grooves. It is found that due to the Marangoni effect, a circulating flow arises within the cavity, thereby leading to an enhancement in the evaporation rate.  相似文献   

9.
The process of contact melting of the solid phase change material (PCM) around a hot sphere, which is driven by the temperature difference between the PCM and the sphere, is analyzed in this paper. Considering the difference of the normal angle between the sphere surface and the solid–liquid interface of the melting PCM, the fundamental equations of the melting process are derived with the film theory. The new film thickness and pressure distribution inside the liquid film and the variation law of the normal angle of the solid–liquid interface and the melting velocity of the sphere are also obtained. It is found that (1) while normal angle at sphere surface φ is within a certain value φ0, which is related to Ste number and the outside force F, it has no obvious effect on the pressure distribution inside the liquid film and the numerical results by the present model are in accordance with the analytical results in the published literature, (2) the film thickness at φ = ±90° is constringent to a certain value and not the infinity, (3) the analytical results can be employed approximately to analyze the contact melting process except for the film thickness at φ = ±90°.  相似文献   

10.
The magnetohydrodynamics flow and heat transfer in a thin liquid film over an unsteady elastic stretching surface are analyzed by the homotopy analysis method. A more general surface temperature is taken into consideration. The effects of various parameters in this study are discussed and presented graphically. The good agreement between the analytic series solutions and the previous numerical results shows the effectiveness of HAM to this problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
在磁约束核聚变堆的面对等离子部件设计中,液态金属锂膜流因具有带走杂质、保护面对等离子固壁等优点而被认为是优选方案之一. 然而,如何克服聚变堆中强磁场环境下产生的磁流体力学效应并形成大面积均匀铺展锂膜流动是目前亟需解决的问题.本文通过搭建室温液 态镓铟锡回路和高温液态锂回路,开展了两种不同特性的液态金属膜流实验, 并采用传统可视化方法获得了展向磁场存在时镓铟锡和锂在导电底板形成的液膜流动表面特征.实验结果 表明: 无磁场时,两种液态金属膜流流动表面波动特性与常规流体膜流均一致, 即随着流动雷诺数的增加表面波动变得更为混乱; 而展向磁场存在时,镓铟锡膜流表面波动变得更为规则, 且沿着磁场方向平行排列,表现为拟二维波动的特征; 而锂膜流却产生了明显的磁流体 力学阻力效应,表现为在流动方向局部产生锂滞留现象, 且滞留点随雷诺数增大向下游移动. 最后通过膜流受力分析,进一步阐述了锂膜流受到比镓铟锡膜流更为严重磁流体力学效应影响的原因.   相似文献   

12.
Wall slip is often observed in a highly sheared fluid film in a solid gap. This makes a difficulty in mathematical analysis for the hydrodynamic effect because fluid velocity at the liquid–solid interfaces is not known a priori. If the gap has a convergent–divergent wedge, a free boundary pressure condition, i.e. Reynolds pressure boundary condition, is usually used in the outlet zone in numerical solution. This paper, based on finite element method and parametric quadratic programming technique, gives a numerical solution technique for a coupled boundary non‐linearity of wall slip and free boundary pressure condition. It is found that the numerical error decreases with the number of elements in a negative power law having an index larger than 2. Our method does not need an iterative process and can simultaneously gives rise to fluid film pressure distribution, wall slip velocity and surface shear stress. Wall slip always decreases the hydrodynamic pressure. Large wall slip even causes a null hydrodynamic pressure in a pure sliding solid gap. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Numerical simulation of air–water slug flows accelerated from steady states with different initial velocities in a micro tube is conducted. It is shown that the liquid film formed between the gas bubble and the wall in an accelerated flow is significantly thinner than that in a steady flow at the same instantaneous capillary number. Specifically, the liquid film thickness is kept almost unchanged just after the onset of acceleration, and then gradually increases and eventually converges to that of an accelerated flow from zero initial velocity. Due to the flow acceleration, the Stokes layer is generated from the wall, and the instant velocity profile can be given by superposition of the Stokes layer and the initial parabolic velocity profile of a steady flow. It is found that the velocity profile inside a liquid slug away from the bubble can be well predicted by the analytical solution of a single-phase flow with acceleration. The change of the velocity profile in an accelerated flow changes the balance between the inertia, surface tension and viscous forces around the meniscus region, and thus the resultant liquid film thickness. By introducing the displacement thickness, the existing correlation for liquid film thickness in a steady flow (Han and Shikazono, 2009) is extended so that it can be applied to a flow with acceleration from an arbitrary initial velocity. It is demonstrated that the proposed correlation can predict liquid film thickness at Re < 4600 within the range of ±10% accuracy.  相似文献   

14.
Spiral wound heat exchanger (SWHE) relying on falling film evaporation and boiling is often used for FLNG. The performance of SWHE can be impacted strongly by the motion of the FLNG caused by the wave and typhoon. The falling film characteristics of SWHE outside circular tube are studied experimentally and numerically by a visualization experimental device based on the high-speed camera and a numerical model based on the dynamic grid. The results show that the wave crest of the liquid film moves to the titled side under offshore conditions. The evolution process of falling film flow pattern outside circular tube with the tilt angle of 9° can be divided into four stages: droplet formation and migration, liquid column formation and migration, liquid column coalescence, liquid sheet formation. A correlation permitting the prediction of the falling film flow pattern outside circular tube and the other one permitting the prediction of the average film thickness of circular tube are developed respectively based on the experimental and numerical data.  相似文献   

15.
Two-dimensional numerical simulation is performed to understand the effect of flow pulsation on the flow and heat transfer from a heated square cylinder at Re = 100. Numerical calculations are carried out by using a finite volume method based on the pressure-implicit with splitting of operators algorithm in a collocated grid. The effects of flow pulsation amplitude (0.2 ≤ A ≤ 0.8) and frequency (0 ≤ f p  ≤ 20 Hz) on the detailed kinematics of flow (streamlines, vorticity patterns), the macroscopic parameters (drag coefficient, vortex shedding frequency) and heat transfer enhancement are presented in detail. The Strouhal number of vortices shedding, drag coefficient for non-pulsating flow are compared with the previously published data, and good agreement is found. The lock-on phenomenon is observed for a square cylinder in the present flow pulsation. When the pulsating frequency is within the lock-on regime, time averaged drag coefficient and heat transfer from the square cylinder is substantially augmented, and when the pulsating frequency in about the natural vortex shedding frequency, the heat transfer is also substantially enhanced. In addition, the influence of the pulsating amplitude on the time averaged drag coefficient, heat transfer enhancement and lock-on occurrence is discussed in detail.  相似文献   

16.
A new physical model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. To estimate the velocity profile in the liquid film, the liquid film was assumed to be in Couette flow forced by the interfacial velocity at the liquid–vapor interface. For simplifying the calculation procedures, the interfacial velocity was estimated by introducing an empirical power-law velocity profile. The resulting film thickness and heat transfer coefficient from the model were compared with the experimental data and the results obtained from the other condensation models. The results demonstrated that the proposed model described the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.  相似文献   

17.
Experimental results are presented for the growth of surface waves on a liquid film that thins as it flows under gravity over the surface of an upright circular cone. The characteristics of the mean film are calculated on the assumption of quasi-parallel flow, and the actual mean thickness found to relate very closely to that found on this basis. The development of the film was found to fall into three phases: the entry zone in which the velocity profile of the film becomes established where no waves are visible, a region of wave growth in which amplitude, wave speed, and wave length all grow, and a final region in which amplitude and wave speed decline as the film thins further although wave length continues to grow. An empirical relationship is presented which expresses the wave number at any point on the cone in terms of the flow rate and a parameter based on the local Reynolds and Weber numbers and cone angle. It was found that for a given flow rate the maximum wave amplitude was reached at a value of wave number of 0·048.  相似文献   

18.
This paper investigates the stability of thin viscoelastic liquid film flowing down on the inner surface of a rotating vertical cylinder by means of the long wave perturbation. After proving the insufficiency of the linear model in characterization of certain flow behaviors, a generalized nonlinear kinematic model is then derived to represent the physical system. This model is solved through the following procedure. In the first step, the normal mode method is used to characterize the linear behaviors. The amplitude growth rates and the threshold conditions are characterized subsequently and summarized as the by-products of the linear solutions. In the second step, a nonlinear film flow model is solved by using the method of multiple scales to characterize flow behaviors at various states of sub-critical stability, sub-critical instability, supercritical stability, and supercritical explosion. The modeling results indicate that with the increase in the rotation speed Ω and the radius of cylinder R, the film flow system will be more stable.  相似文献   

19.
Numerical simulation of high-speed micro-droplet impingement on thin liquid film covering a heated solid surface has been carried out. Effect of droplet Weber number and liquid film thickness on the characteristics of flow and heat transfer has been investigated using the coupled level set and volume of fluid method. The code is validated against both the experimental and numerical results from the literature. Results show that the crown dynamics is mostly affected by variations in the initial film thickness but is weakly influenced by changes in the Weber number. The liquid within the film can be categorized as three regions based on the heat transfer distribution: the static film region, the transition region, and the impact region. The transient local wall temperature shows three stages: first stage when the temperature decreases rapidly, followed by a second stage in which the temperature starts to rise and then becomes almost constant in the third stage. After drop impact, the local Nusselt number continuously increases until reaching a maximum value, and then decreases approaching the initial impact stage. Our analysis of the change in Weber number shows that larger Weber number contributes to intense temperature variation at the crater core relative to other radial locations. Lastly, the results reveal that the thinner liquid film leads to lower wall temperature and hence, higher average Nusselt number.  相似文献   

20.
In this work, free convective flow and heat transfer in power-law fluids from two heated square cylinders in tandem arrangement is studied. The governing differential equations have been solved numerically over wide ranges of Grashof number, 10 ≤ Gr ≤ 1,000, Prandtl number, 0.71 ≤ Pr ≤ 50 and power-law index, 0.4 ≤ n ≤ 1.8. In order to elucidate the extent of inter-cylinder interaction, the non-dimensional inter-cylinder spacing, L/d is varied in the range, 2 ≤ L/d ≤ 6. The results are interpreted in terms of streamline and isotherm contours in the proximity of two cylinders to gain physical insights into the nature of flow. At the next level, the distribution of the local Nusselt number along the surface of the cylinders is presented. At the minimum inter-cylinder spacing due to the intense interference, the downstream cylinder contributes much less to the overall heat transfer whereas it experiences much higher hydrodynamic drag than the upstream cylinder. Broadly, the local and average Nusselt number for both cylinders show a positive dependence on both Grashof and Prandtl numbers. Also, all else being equal, shear-thinning fluid behaviour promotes the rate of heat transfer and shear-thickening fluid behaviour impedes it. Finally, the present numerical results have been correlated by using simple forms of equations thereby enabling the estimation of Nusselt number in a new application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号