首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article proposes a new Bayesian approach to prediction on continuous covariates. The Bayesian partition model constructs arbitrarily complex regression and classification surfaces by splitting the covariate space into an unknown number of disjoint regions. Within each region the data are assumed to be exchangeable and come from some simple distribution. Using conjugate priors, the marginal likelihoods of the models can be obtained analytically for any proposed partitioning of the space where the number and location of the regions is assumed unknown a priori. Markov chain Monte Carlo simulation techniques are used to obtain predictive distributions at the design points by averaging across posterior samples of partitions.  相似文献   

2.
The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online.  相似文献   

3.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

4.
Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects that enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework enables highly flexible inference for ordinal regression relationships, avoiding assumptions of linearity or additivity in the covariate effects. In standard parametric ordinal regression models, computational challenges arise from identifiability constraints and estimation of parameters requiring nonstandard inferential techniques. A key feature of the nonparametric model is that it achieves inferential flexibility, while avoiding these difficulties. In particular, we establish full support of the nonparametric mixture model under fixed cut-off points that relate through discretization the latent continuous responses with the ordinal responses. The practical utility of the modeling approach is illustrated through application to two datasets from econometrics, an example involving regression relationships for ozone concentration, and a multirater agreement problem. Supplementary materials with technical details on theoretical results and on computation are available online.  相似文献   

5.
Randomize-then-optimize (RTO) is widely used for sampling from posterior distribu-tions in Bayesian inverse problems.However,RTO can be computationally intensive for complexity problems due to repetitive evaluations of the expensive forward model and its gradient.In this work,we present a novel goal-oriented deep neural networks (DNN) sur-rogate approach to substantially reduce the computation burden of RTO.In particular,we propose to drawn the training points for the DNN-surrogate from a local approximated posterior distribution-yielding a flexible and efficient sampling algorithm that converges to the direct RTO approach.We present a Bayesian inverse problem governed by elliptic PDEs to demonstrate the computational accuracy and efficiency of our DNN-RTO ap-proach,which shows that DNN-RTO can significantly outperform the traditional RTO.  相似文献   

6.
We propose a method for estimating nonstationary spatial covariance functions by representing a spatial process as a linear combination of some local basis functions with uncorrelated random coefficients and some stationary processes, based on spatial data sampled in space with repeated measurements. By incorporating a large collection of local basis functions with various scales at various locations and stationary processes with various degrees of smoothness, the model is flexible enough to represent a wide variety of nonstationary spatial features. The covariance estimation and model selection are formulated as a regression problem with the sample covariances as the response and the covariances corresponding to the local basis functions and the stationary processes as the predictors. A constrained least squares approach is applied to select appropriate basis functions and stationary processes as well as estimate parameters simultaneously. In addition, a constrained generalized least squares approach is proposed to further account for the dependencies among the response variables. A simulation experiment shows that our method performs well in both covariance function estimation and spatial prediction. The methodology is applied to a U.S. precipitation dataset for illustration. Supplemental materials relating to the application are available online.  相似文献   

7.
While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area that we feel deserves much further attention. Toward this aim, this article proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang–Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains—a feature that both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance of this new parallel adaptive Wang–Landau algorithm is studied in several applications. Through a Bayesian variable selection example, we demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm’s adaptive proposal to induce mode-jumping is illustrated through a Bayesian mixture modeling application. Last, through a two-dimensional Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models. Supplemental materials are available online.  相似文献   

8.
This article proposes a new approach for Bayesian and maximum likelihood parameter estimation for stationary Gaussian processes observed on a large lattice with missing values. We propose a Markov chain Monte Carlo approach for Bayesian inference, and a Monte Carlo expectation-maximization algorithm for maximum likelihood inference. Our approach uses data augmentation and circulant embedding of the covariance matrix, and provides likelihood-based inference for the parameters and the missing data. Using simulated data and an application to satellite sea surface temperatures in the Pacific Ocean, we show that our method provides accurate inference on lattices of sizes up to 512 × 512, and is competitive with two popular methods: composite likelihood and spectral approximations.  相似文献   

9.
Hidden Markov models are used as tools for pattern recognition in a number of areas, ranging from speech processing to biological sequence analysis. Profile hidden Markov models represent a class of so-called “left–right” models that have an architecture that is specifically relevant to classification of proteins into structural families based on their amino acid sequences. Standard learning methods for such models employ a variety of heuristics applied to the expectation-maximization implementation of the maximum likelihood estimation procedure in order to find the global maximum of the likelihood function. Here, we compare maximum likelihood estimation to fully Bayesian estimation of parameters for profile hidden Markov models with a small number of parameters. We find that, relative to maximum likelihood methods, Bayesian methods assign higher scores to data sequences that are distantly related to the pattern consensus, show better performance in classifying these sequences correctly, and continue to perform robustly with regard to misspecification of the number of model parameters. Though our study is limited in scope, we expect our results to remain relevant for models with a large number of parameters and other types of left–right hidden Markov models.  相似文献   

10.
We discuss efficient Bayesian estimation of dynamic covariance matrices in multivariate time series through a factor stochastic volatility model. In particular, we propose two interweaving strategies to substantially accelerate convergence and mixing of standard MCMC approaches. Similar to marginal data augmentation techniques, the proposed acceleration procedures exploit nonidentifiability issues which frequently arise in factor models. Our new interweaving strategies are easy to implement and come at almost no extra computational cost; nevertheless, they can boost estimation efficiency by several orders of magnitude as is shown in extensive simulation studies. To conclude, the application of our algorithm to a 26-dimensional exchange rate dataset illustrates the superior performance of the new approach for real-world data. Supplementary materials for this article are available online.  相似文献   

11.
Nested Partitions Method for Stochastic Optimization   总被引:1,自引:0,他引:1  
The nested partitions (NP) method is a recently proposed new alternative for global optimization. Primarily aimed at problems with large but finite feasible regions, the method employs a global sampling strategy that is continuously adapted via a partitioning of the feasible region. In this paper we adapt the original NP method to stochastic optimization where the performance is estimated using simulation. We prove asymptotic convergence of the new method and present a numerical example to illustrate its potential.  相似文献   

12.
This article presents a Markov chain Monte Carlo algorithm for both variable and covariance selection in the context of logistic mixed effects models. This algorithm allows us to sample solely from standard densities with no additional tuning. We apply a stochastic search variable approach to select explanatory variables as well as to determine the structure of the random effects covariance matrix.

Prior determination of explanatory variables and random effects is not a prerequisite because the definite structure is chosen in a data-driven manner in the course of the modeling procedure. To illustrate the method, we give two bank data examples.  相似文献   

13.
In comparing two populations, sometimes a model incorporating a certain probability order is desired. In this setting, Bayesian modeling is attractive since a probability order restriction imposed a priori on the population distributions is retained a posteriori. Extending the work in Gelfand and Kottas (2001) for stochastic order specifications, we formulate modeling for distributions ordered in variability. We work with Dirichlet process mixtures resulting in a fully Bayesian semiparametric approach. The details for simulation-based model fitting and prior specification are provided. An example, based on two small subsets of time intervals between eruptions of the Old Faithful geyser, illustrates the methodology.  相似文献   

14.
We consider a network of sensors that measure the intensities of a complex plume composed of multiple absorption–diffusion source components. We address the problem of estimating the plume parameters, including the spatial and temporal source origins and the parameters of the diffusion model for each source, based on a sequence of sensor measurements. The approach not only leads to multiple‐source detection, but also the characterization and prediction of the combined plume in space and time. The parameter estimation is formulated as a Bayesian inference problem, and the solution is obtained using a Markov chain Monte Carlo algorithm. The approach is applied to a simulation study, which shows that an accurate parameter estimation is achievable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We present a Bayesian framework for registration of real-valued functional data. At the core of our approach is a series of transformations of the data and functional parameters, developed under a differential geometric framework. We aim to avoid discretization of functional objects for as long as possible, thus minimizing the potential pitfalls associated with high-dimensional Bayesian inference. Approximate draws from the posterior distribution are obtained using a novel Markov chain Monte Carlo (MCMC) algorithm, which is well suited for estimation of functions. We illustrate our approach via pairwise and multiple functional data registration, using both simulated and real datasets. Supplementary material for this article is available online.  相似文献   

16.
We introduce new classes of stationary spatial processes with asymmetric, sub-Gaussian marginal distributions using the idea of expectiles. We derive theoretical properties of the proposed processes. Moreover, we use the proposed spatial processes to formulate a spatial regression model for point-referenced data where the spatially correlated errors have skewed marginal distribution. We introduce a Bayesian computational procedure for model fitting and inference for this class of spatial regression models. We compare the performance of the proposed method with the traditional Gaussian process-based spatial regression through simulation studies and by applying it to a dataset on air pollution in California.  相似文献   

17.
Our article considers the class of recently developed stochastic models that combine claims payments and incurred losses information into a coherent reserving methodology. In particular, we develop a family of hierarchical Bayesian paid–incurred claims models, combining the claims reserving models of Hertig (1985) and Gogol (1993). In the process we extend the independent log-normal model of Merz and Wüthrich (2010) by incorporating different dependence structures using a Data-Augmented mixture Copula paid–incurred claims model.In this way the paper makes two main contributions: firstly we develop an extended class of model structures for the paid–incurred chain ladder models where we develop precisely the Bayesian formulation of such models; secondly we explain how to develop advanced Markov chain Monte Carlo sampling algorithms to make inference under these copula dependence PIC models accurately and efficiently, making such models accessible to practitioners to explore their suitability in practice. In this regard the focus of the paper should be considered in two parts, firstly development of Bayesian PIC models for general dependence structures with specialised properties relating to conjugacy and consistency of tail dependence across the development years and accident years and between Payment and incurred loss data are developed. The second main contribution is the development of techniques that allow general audiences to efficiently work with such Bayesian models to make inference. The focus of the paper is not so much to illustrate that the PIC paper is a good class of models for a particular data set, the suitability of such PIC type models is discussed in Merz and Wüthrich (2010) and Happ and Wüthrich (2013). Instead we develop generalised model classes for the PIC family of Bayesian models and in addition provide advanced Monte Carlo methods for inference that practitioners may utilise with confidence in their efficiency and validity.  相似文献   

18.
Gaussian time-series models are often specified through their spectral density. Such models present several computational challenges, in particular because of the nonsparse nature of the covariance matrix. We derive a fast approximation of the likelihood for such models. We propose to sample from the approximate posterior (i.e., the prior times the approximate likelihood), and then to recover the exact posterior through importance sampling. We show that the variance of the importance sampling weights vanishes as the sample size goes to infinity. We explain why the approximate posterior may typically be multimodal, and we derive a Sequential Monte Carlo sampler based on an annealing sequence to sample from that target distribution. Performance of the overall approach is evaluated on simulated and real datasets. In addition, for one real-world dataset, we provide some numerical evidence that a Bayesian approach to semiparametric estimation of spectral density may provide more reasonable results than its frequentist counterparts. The article comes with supplementary materials, available online, that contain an Appendix with a proof of our main Theorem, a Python package that implements the proposed procedure, and the Ethernet dataset.  相似文献   

19.
In Bayesian analysis of mixture models, the label-switching problem occurs as a result of the posterior distribution being invariant to any permutation of cluster indices under symmetric priors. To solve this problem, we propose a novel relabeling algorithm and its variants by investigating an approximate posterior distribution of the latent allocation variables instead of dealing with the component parameters directly. We demonstrate that our relabeling algorithm can be formulated in a rigorous framework based on information theory. Under some circumstances, it is shown to resemble the classical Kullback-Leibler relabeling algorithm and include the recently proposed equivalence classes representatives relabeling algorithm as a special case. Using simulation studies and real data examples, we illustrate the efficiency of our algorithm in dealing with various label-switching phenomena. Supplemental materials for this article are available online.  相似文献   

20.
The Dirichlet process and its extension, the Pitman–Yor process, are stochastic processes that take probability distributions as a parameter. These processes can be stacked up to form a hierarchical nonparametric Bayesian model. In this article, we present efficient methods for the use of these processes in this hierarchical context, and apply them to latent variable models for text analytics. In particular, we propose a general framework for designing these Bayesian models, which are called topic models in the computer science community. We then propose a specific nonparametric Bayesian topic model for modelling text from social media. We focus on tweets (posts on Twitter) in this article due to their ease of access. We find that our nonparametric model performs better than existing parametric models in both goodness of fit and real world applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号