首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immersed boundary approach for the modeling of complex geometries in incompressible flows is examined critically from the perspective of satisfying boundary conditions and mass conservation. It is shown that the system of discretized equations for mass and momentum can be inconsistent, if the velocity is used in defining the force density to satisfy the boundary conditions. As a result, the velocity is generally not divergence free and the pressure at locations in the vicinity of the immersed boundary is not physical. However, the use of the pseudo‐velocities in defining the force density, as frequently done when the governing equations are solved using a fractional step or projection method, combined with the use of the specified velocity on the immersed boundary, is shown to result in a consistent set of equations which allows a divergence‐free velocity but, depending on the time step, is shown to have the undesirable effects of inaccurately satisfying the boundary conditions and allowing a significant permeability of the immersed boundary. If the time step is reduced sufficiently, the boundary conditions on the immersed boundary can be satisfied. However, this entails an unacceptable increase in computational expense. Two new methods that satisfy the boundary conditions and allow a divergence‐free velocity while avoiding the increased computational expense are presented and shown to be second‐order accurate in space. The first new method is based on local time step reduction. This method is suitable for problems where the immersed boundary does not move. For these problems, the first new method is shown to be closely related to the second new method. The second new method uses an optimization scheme to minimize the deviation from the interpolation stencil used to represent the immersed boundary while ensuring a divergence‐free velocity. This method performs well for all problems, including those where the immersed boundary moves relative to the grid. Additional results include showing that the force density that is added to satisfy the boundary conditions at the immersed boundary is unbounded as the time step is reduced and that the pressure in the vicinity of the immersed boundary is unphysical, being strongly a function of the time step. A method of computing the total force on an immersed boundary which takes into account the specifics of the numerical solver used in the iterative process and correctly computes the total force irrespective of the residual level is also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Satisfying the boundary conditions at the free surface may impose severe difficulties to the computation of turbulent open-channel flows with finite-volume or finite-element methods, in particular, when the flow conditions are nearly critical. It is proposed to apply an iteration procedure that is based on an asymptotic expansion for large Reynolds numbers and Froude numbers close to the critical value 1.The iteration procedure starts by prescribing a first approximation for the free surface as it is obtained from solving an ODE that has been derived previously by means of an asymptotic expansion (Grillhofer and Schneider, 2003). The numerical solution of the full equations of motion then gives a surface pressure distribution that differs from the constant value required by the dynamic boundary condition. To determine a correction to the elevation of the free surface we next solve an ODE that is obtained from the asymptotic analysis of the flow with a prescribed pressure disturbance at the free surface. The full equations of motion are then solved for the corrected surface, and the procedure is repeated until criteria of accuracy for surface elevation and surface pressure, respectively, are satisfied.The method is applied to an undular hydraulic jump as a test case.  相似文献   

4.
We establish existence, uniqueness and stability of transonic shocks for a steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity (non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Fréchet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.  相似文献   

5.
Summary The Hansen's vector wave functions have been modified so it could apply directly for the solution of general exterior boundary value problems in compressible plasma for a spherical geometry. The vector wave functionL has been included to represent an acoustic wave and the three angular orthogonal functions have been defined using complex Fourier series in the azymuthal direction. Using this modified method of vector wave functions, the exterior spherical boundary value problem in compressible isotropic plasma has been solved. The boundary conditions prescribed over the surface of the sphere have been the tangential electric field (or the tangential magnetic field) and the radial component of the velocity vector (or the pressure). From those four basic boundary value problems the coefficients have been derived and several particular cases has been discussed.The research reported in this paper was supported in part by the National Science Foundation, U.S.A.  相似文献   

6.
Numerical techniques for the analysis of wave–body interactions are developed by the combined use of two boundary integral equation formulations. The velocity potential, which is expressed in a perturbation expansion, is obtained directly from the application of Green's theorem (the ‘potential formulation’), while the fluid velocity is obtained from the gradient of the alternative form where the potential is represented by a source distribution (the ‘source formulation’). In both formulations, the integral equations are modified to remove the effect of the irregular frequencies. It is well known from earlier works that if the normal velocity is prescribed on the interior free surface, inside the body, an extended boundary integral equation can be derived which is free of the irregular frequency effects. It is shown here that the value of the normal velocity on the interior free surface must be continuous with that outside the body, to avoid a logarithmic singularity in the source strength at the waterline. Thus the analysis must be carried out sequentially in order to evaluate the fluid velocity correctly: first for the velocity potential and then for the source strength. Computations are made to demonstrate the effectiveness of the extended boundary integral euations in the potential and source formulations. Results are shown which include the added-mass and damping coefficients and the first-order wave-exciting forces for simple three-dimensional bodies and the second-order forces on a tension-leg-platform. The latter example illustrates the importance of removing irregular frequency effects in the context of second-order wave loads.  相似文献   

7.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of two-dimensional, periodic in the horizontal coordinate, convection of an incompressible fluid heated from below between two horizontal planes is considered. The problem is solved in two formulations: with (stress-)free and hard (no-slip) boundary conditions on the horizontal planes. It is shown that at small supercriticalities the two-dimensional convection calculation leads to more correct results with hard than with free boundary conditions. It is established that the difference between the free and hard conditions is most strongly manifested in the pulsations of the vertical velocity component, whereas the dependence of the Nusselt number and the pulsations of the horizontal velocity component on the boundary conditions is more weakly expressed.  相似文献   

9.
The aim of this paper is to develop a methodology for solving the incompressible Navier–Stokes equations in the presence of one or several open boundaries. A new set of open boundary conditions is first proposed. This has been developed in the context of the velocity–vorticity formulation, but it is also emphasized how it can be formally extended to the equations in primitive variables. The case of a domain involving several independent open boundaries is considered next. An influence matrix technique is applied such that the inlet mass flux is split onto the several outlets in order to enforce the prescribed mean pressure at each outlet. Both approaches are validated by numerical test cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper we study the motion of a self-propelled rigid body through a Navier-Stokes fluid that fills all the three-dimensional space exterior to it. We formulate the problem and prove the existence of a weak solution that is defined globally in time, provided that the net flux across the boundary, of the prescribed boundary values for the velocity, is zero. It is these prescribed boundary values that propel the body, and the body is free to rotate during its motion. In the special case of a body which is symmetric about an axis, and propelled by symmetric boundary values, we obtain strong solutions representing translational motions in the direction of the axis. Further, we prove that for small Reynolds numbers every steady solution with such axial symmetry is attainable as the limit, as time tends to infinity, of a strong nonsteady solution which starts from rest.  相似文献   

11.
The transition and separation processes of the boundary layer developing on a flat plate under a prescribed adverse pressure gradient typical of Ultra-High-Lift low-pressure turbine profiles have been investigated, with and without the application of a synthetic jet (zero net mass flow rate jet). A mechanical piston has been adopted to produce an intermittent flow with zero net mass flow rate. The capability of the device to suppress or reduce the large laminar separation bubble occurring under steady inflow condition at low Reynolds numbers has been experimentally investigated by means of hot-wire measurements. Wall static pressure measurements complement the hot-wire time-resolved velocity results. The paper reports the investigations performed for both steady and controlled conditions. The active device is able to control the laminar separation bubble induced at low Reynolds number conditions by the strong adverse pressure gradient. An overall view of the time-dependent evolution of the controlled boundary layer is provided by the phase-locked ensemble averaging technique, triggered at the synthetic jet frequency. The separated flow transition process, which is detected for the uncontrolled condition, is modified by the synthetic jet in different ways during the blowing and suction phases. Overall, the phase-locked velocity distributions show a reduced separated flow region for the whole jet cycle as compared to the uncontrolled condition. The phase-locked distributions of the random unsteadiness allow the identification of vortical structures growing along the shear layer mainly during the blowing phase.  相似文献   

12.
The problem of the dispersed particulate-fluid two-phase flow in a channel with permeable walls under the effect of the Beavers and Joseph slip boundary condition is concerned in this paper. The analytical solution has been derived for the longitude pressure difference, stream functions, and the velocity distribution with the perturbation method based on a small width to length ratio of the channel. The graphical results for pressure, velocity, and stream function are presented and the effects of geometrical coefficients, the slip parameter and the volume fraction density on the pressure variation, the streamline structure and the velocity distribution are evaluated numerically and discussed. It is shown that the sinusoidal channel, accompanied by a higher friction factor, has higher pressure drop than that of the parallel-plate channel under fully developed flow conditions due to the wall-induced curvature effect. The increment of the channel’s width to the length ratio will remarkably increase the flow rate because of the enlargement of the flow area in the channel. At low Reynolds number ranging from 0 to 65, the fluids move forward smoothly following the shape of the channel. Moreover, the slip boundary condition will notably increase the fluid velocity and the decrease of the slip parameter leads to the increment of the velocity magnitude across the channel. The fluid-phase axial velocity decreases with the increment of the volume fraction density.  相似文献   

13.
This paper aims at showing that to prescribe a flow rate at the inlet section of a vertical channel with heated walls leads to surprising and counterintuitive physical solutions, especially when the problem is modeled as elliptical. Such an approach can give rise to the onset of recirculation cells in the entry region while the heat transfer is slightly increased under the influence of the buoyancy force. We suggest an alternative model based on more realistic boundary conditions based on a prescribed total pressure at the inlet and a fixed pressure at the outlet sections. In this case, the pressure and buoyancy forces act effectively in the same direction and, the concept of buoyancy aiding convection makes sense. The numerical results emphasize the large differences between solutions based on prescribed inlet velocity and those obtained with the present pressure-based boundary conditions.  相似文献   

14.
A buoyancy-induced stationary flow with viscous dissipation in a horizontal porous layer is investigated. The lower boundary surface is impermeable and subject to a uniform heat flux. The upper open boundary has a prescribed, linearly varying, temperature distribution. The buoyancy-induced basic velocity profile is parallel and non-uniform. The linear stability of this basic solution is analysed numerically by solving the disturbance equations for oblique rolls arbitrarily oriented with respect to the basic velocity field. The onset conditions of thermal instability are governed by the Rayleigh number associated with the prescribed wall heat flux at the lower boundary, by the horizontal Rayleigh number associated with the imposed temperature gradient on the upper open boundary, and by the Gebhart number associated with the effect of viscous dissipation. The critical value of the Rayleigh number for the onset of the thermal instability is evaluated as a function of the horizontal Rayleigh number and of the Gebhart number. It is shown that the longitudinal rolls, having axis parallel to the basic velocity, are the most unstable in all the cases examined. Moreover, the imposed horizontal temperature gradient tends to stabilise the basic flow, while the viscous dissipation turns out to have a destabilising effect.  相似文献   

15.
Most existing algorithms for two‐dimensional shallow water simulations treat multi‐dimensional waves using wave splitting or time splitting. This often results in anisotropy of the computed flow. Both wave splitting and time splitting are based on a local decomposition of the multi‐dimensional problem into one‐dimensional, orthogonal problems. Therefore, these algorithms handle boundary conditions in a very similar way to classical one‐dimensional algorithms. This should be expected to trigger a dependence of the number of boundary conditions on the direction of the flow at the boundaries. However, most computational codes based on alternate directions do not exhibit such sensitivity, which seems to contradict the theory of existence and uniqueness of the solution. The present paper addresses these issues. A Riemann solver is presented that aims to convert two‐dimensional Riemann problems into a one‐dimensional equivalent Riemann problem (ERP) at the interfaces between the computational cells. The ERP is derived by applying the theory of bicharacteristics at each end of the interface and by performing a linear averaging along the interface. The proposed approach is tested against the traditional one‐dimensional approach on the classical circular dambreak problem. The results show that the proposed solver allows the isotropy of the solution to be better preserved. Use of the two‐dimensional solver with a first‐order scheme may give better results than use of a second‐order scheme with a one‐dimensional solver. The theory of bicharacteristics is also used to discuss the issue of boundary conditions. It is shown that, when the flow is subcritical, the number of boundary conditions affects the accuracy of the solution, but not its existence and uniqueness. When only one boundary condition is to be prescribed, it should not be the velocity in the direction parallel to the boundary. When two boundary conditions are to be prescribed, at least one of them should involve the component of the velocity in the direction parallel to the boundary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Comparisons are made between the Advection–Diffusion Equation (ADE) approach for particle transport and the two-fluid model approach based on the PDF method. In principle, the ADE approach offers a much simpler way of calculating the inertial deposition of particles in a turbulent boundary layer than that based on the PDF approach. However the ADE equations that have recently been used are only strictly valid for a simple Gaussian process when particle inertia is small. Using a prescribed, but in general non-Gaussian random particle velocity field, it is shown that the net particle mass flux contains a drift term in addition to that from the mean velocity of the particle velocity field, associated with the compressibility of the velocity field. Furthermore the diffusive flux in general depends not only upon the gradient of the mean concentration (true only for a Gaussian random flow field) but also upon higher order derivatives whose relative contribution depends on diffusion coefficients Dijk… etc. These coefficients depend upon the statistical moments associated with random displacements and compressibility of the particle flow field along particle trajectories which in turn depend upon particle inertia. In contrast the PDF approach offers the advantage of using a simple gradient (Gaussian) approximation in particle phase space which can lead to a non-Gaussian spatial dispersion process when particle inertia is important. Conditions based on the particle mean free path are derived for which a simple ADE is appropriate. Some of the features of particle transport in an inhomogeneous turbulent flow are illustrated by examining particle dispersion in a random flow field composed of pairs of counter rotating vortices which has an rms velocity which increase linearly from a stagnation point.  相似文献   

17.
Solving numerically hydrodynamical problems of incompressible fluids raises the question of handling first order derivatives (those of pressure) in a closed container and determining its boundary conditions. A way to avoid the first point is to derive a Poisson equation for pressure, although the problem of taking the right boundary conditions still remains. To remove this problem another formulation of the problem has been used consisting of projecting the master equations into the space of divergence‐free velocity fields, so pressure is eliminated from the equations. This technique raises the order of the differential equations and additional boundary conditions may be required. High‐order derivatives are sometimes troublesome, specially in cylindrical coordinates due to the singularity at the origin, so for these problems a low order formulation is very convenient. We research several pressure boundary conditions for the primitive variables formulation of thermoconvective problems. In particular we study the Marangoni instability of an infinite fluid layer and we show that the numerical results with a Chebyshev collocation method are highly correspondent to the exact ones. These ideas have been applied to linear stability analysis of the Bénard–Marangoni (BM) problem in cylindrical geometry and the results obtained have been very accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
It is proposed that all fully rough-wall boundary layers should satisfy self-preservation more closely than a smooth-wall boundary layer. Previous work has shown that the self-preserving forms of the momentum and turbulent kinetic energy equations for a zero pressure gradient turbulent boundary layer, at sufficiently high Reynolds number, require that the wall shear stress is constant with x, and the layer thickness increases linearly with x. Measurements in two rough wall boundary layers suggest these conditions are met without assuming a form for the mean velocity distribution, and are more likely to exist in a fully rough wall layer than a smooth wall layer.  相似文献   

20.
This paper deals with the problem of combined (forced–free) convection in vertical eccentric annuli with simultaneously developing hydrodynamic and thermal boundary layers. A bipolar model has been developed and a numerical algorithm for solving this model is outlined. Results, not available in the literature, are presented for the developing velocity profiles, axial variation of pressure, full development length, and heat transfer parameters under thermal boundary conditions of having one of the annulus boundaries at a constant temperature while the other boundary is insulated. Both aiding and opposing free convection have been considered and possibilities of flow reversal occurrence have also been checked. After a distance from the channel entrance and provided that the value of Gr/Re is sufficiently large, aiding free convection can develop to overcome the fluid friction and the eccentric annular channel eventually works as a diffuser. The value of Gr/Re for which a vertical eccentric annular channel can work as a diffuser decreases as the eccentricity increases. The axial distance from the entrance at which the channel starts to work as a diffuser decreases as Gr/Re increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号