首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pan L  Frydel T  Sander MB  Huang X  Li J 《Inorganic chemistry》2001,40(6):1271-1283
Hydrothermal reactions of simple alkaline salts or their hydroxides with 3,5-pyrazoledicarboxylic acid (H(3)pdc) yielded seven new compounds. At a lower pH level three one-dimensional structures [Ca(Hpdc)(H(2)O)(4)].2H(2)O (1), [Ca(Hpdc)(H(2)O)(4)].H(2)O (2), and [Ba(H(2)pdc)(2)(H(2)O)(4)].2H(2)O (6) were obtained by evaporation of the solutions resulting from hydro(solvo)thermal reactions of MCl(2) (M = Ca, Ba) with H(3)pdc in water (1, 6) or in water/Et(3)N (2) at 150 degrees C for 3 days. Crystal structures of 1 and 2 contain zigzag chains of metal centers bridged by a single Hpdc(2-) ligand, whereas structure 6 consists of linear chains of metal centers bridged by two H(2)pdc(-) ligands. A dimer molecule [Sr(H(3)pdc)(H(2)pdc)(2)(H(2)O)(3)](2).2(H(3)pdc).4H(2)O (4) was obtained from a similar hydrothermal reaction using Sr(ClO(4))(2).6H(2)O instead of MCl(2). This compound contains [2+2] metallomacrocycles. At higher pH levels (pH = 4-6), the three-dimensional polymers [M(Hpdc)(H(2)O)] (Ca 3, Sr 5, Ba 7 ) were isolated by reactions of MCl(2) (M = Ca, Sr, Ba) with H(3)pdc in water/Et(3)N or in M(OH)(2) (M = Ca, Sr, Ba) with H(3)pdc in water under hydro(solvo)thermal conditions (150 degrees C, 3 days). Calcium and strontium are seven- and nine-coordinated in 3 and 5, respectively; barium is nine- and ten-coordinated in 7. It was observed that the increase in pH resulted in a higher connectivity level of ligands, which in turn leads to a higher dimensionality of the crystal structures. The correlation between the structures and pH values will be discussed. Crystal data: for 1, monoclinic, space group P2(1)/n (No. 14), with a = 8.382(2), b = 12.621(3), c = 11.767(2) A, beta = 98.91(3) degrees, Z = 4; for 2, 3, and 5, monoclinic, space group P2(1)/c (No. 14), Z = 4, a = 7.711(2), b = 15.574(3), c = 9.341(2) A, beta = 96.73(3) degrees, Z = 4 (2), a = 6.616(1), b = 12.654(3), c = 8.782(2) A, beta = 103.65(3) degrees, Z = 4 (3), a = 9.213(2), b = 12.088(3), c = 6.196(2) A, beta = 98.96(3) degrees (5); for 4 and 7, triclinic, space group P1 (No. 2), with a = 11.263(2), b = 11.460(3), c = 12.904(2) A, alpha = 71.54(3), beta = 98.96(3), gamma = 89.03(3) degrees, Z = 1 (4), a = 7.107(1), b = 9.780(2), c = 11.431(2) A, alpha = 74.69(3), beta = 73.39(3), gamma = 85.29(3) degrees, Z = 2 (7); for 6, monoclinic, space group C2/c (No. 15), with a = 20.493(4), b = 6.708(1), c = 15.939(3) A, beta = 123.56(3) degrees, Z = 4.  相似文献   

2.
Pyridine-2,6-dicarboxylic acid and 1,2-di-4-pyridylethylene react hydrothermally with nickel(II) nitrate, forming a metal-organic framework that forms a polycatenane-like structure through H-bonding interactions between water molecules and carboxylate O atoms with void spaces. Discrete acyclic trimeric and nonameric water clusters occupy the voids in the structures. X-ray powder diffraction and X-ray structure analysis have been used to characterize this compound. Crystal data for 1 {(3dpeH(2))[Ni(pdc)(2)](3).15H(2)O}: monoclinic space group P2(1)/c, a = 24.730(5) Angstroms, b = 19.895(2) Angstroms, c = 17.257(4) Angstroms, beta = 104.832(5) degrees, V = 8208(4) Angstroms(3), Z = 4, R1 = 0.0429, wR2 = 0.1072, and S = 1.051.  相似文献   

3.
A novel heterometallic complex [Na2Cu2Gd2(pdc)4(H2O)14·2H2O] (H3pdc = 1H- pyrazole-3,5-dicarboxylic acid) has been synthesized and characterized by 1R spectra, elemental analysis, and single-crystal X-ray analysis. The crystal belongs to the monoclinic system, space group P2 1/c with a = 7.9521(18), b = 12.251(3), c = 22.293(5) A, β = 110.173(5)°, V= 2038.5(8) A^3, Mr = 1388.13, Z = 2, F(000) = 1352, Dc = 2.261 g/cm^3,/2 = 4.380 mm^-1, the final R = 0.0409 and wR = 0.0622 for 2453 observed reflections with I 〉 2σ(I). The structural analysis shows that the Na^I, Cu^II and Gd^II ions are linked together by two kinds of bridging ligands (pdc^3- and H2O) to form a main moiety [Na2Cu2Gd2(pdc)4(H2O)14], which can be regarded as a centrosymmetric dimmer of [NaCuGd(pdc)2(H2O)7]. Many hydrogen bonds exist in the complex to build a 3D supramolecular framework.  相似文献   

4.
Hydrothermal (deuteratothermal) reaction of L-ethyl lactate (Lig-Et) with Eu(ClO(4))(3)6 H(2)O gives colorless block crystals of [Eu(Lig)(2)(X(2)O)(2)][ClO(4)] (1, X=H; 2, X=D) both of which possess a two-dimensional laminar homochiral framework. Single-crystal dielectric measurements reveal that 1 and 2 display a giant dielectric anisotropy approximately exceeding 100 and large isotopic effect with about 54 % enhancement along the a axis. Their ferroelectric features further confirm this respect. Crystal parameters: 1, C(6)H(14)ClO(12)Eu, M(r)=465.58, monoclinic, C(2), a=8.6786(6), b=8.3965(6), c=10.2153(7) A, beta=92.040(1) degrees , V=743.92(9) A(3), Z=2, rho(calcd)=2.079 Mg m(-3), R(1)=0.0508, wR(2)=0.1239, mu=4.448 mm(-1), S=1.043; Flack=0.04(5). 2: C(6)H(10)D(4)ClO(12)Eu, M(r)=469.61, monoclinic, C(2), a=8.689(2), b=8.410(2), c=10.224(3) A, beta=92.057(4) degrees , V=746.7(3) A(3), Z=2, rho(calcd)=2.089 Mg m(-3), R(1)=0.0465, wR(2)=0.1150, mu=4.432 mm(-1), S=1.058; Flack=0.02(5).  相似文献   

5.
Alam MA  Nethaji M  Ray M 《Inorganic chemistry》2005,44(5):1302-1308
A H-bond capable chiral tetradentate ligand, Fe3+, and acetate ion assembles into a hydroxo-bridged binuclear complex with the formula [FeIII2(mu-OH)(mu-OAc)(S-L)2] x 4H2O (1) where H2S-L = S-2-(2-hydroxy-benzylamino)-3-(1H-imidazol-4-yl)-propionic acid. The crystal of 1 contains right-handed one-dimensional (1D) helical channels with 7.3-9.8 A diameter. A similar reaction with a ligand having opposite chirality forms the complex with left-handed helical channels (1a). Heating the crystals of 1 at 95 degrees C under reduced pressure selectively removes three waters from the channel forming an enantiopure porous crystal with empty channels (solvent accessible voids 18% v/v). Intermolecular hydrogen bonding between the imidazole N-H and phenolate oxygen in 1-2 forms a C6 symmetric helix with bridging hydroxo groups pointing inside the channels. All the H-bond capable atoms in the ligand along with one water molecule form an extended H-bonded network throughout the crystal. Exposing the empty channels of 2 to iodine vapor indicates partial filling of the channels with iodine. Crystal data for 1 x 4H2O include the following: hexagonal, P61, a = b = 13.164(3) A, c = 36.305 (11) A, alpha = beta = 90 degrees , gamma = 120 degrees , Z = 6, R1 = 0.0387, wR2 = 0.0842. Crystal data for 1a x 2H2O include the following: hexagonal, P6(5), a = b = 13.151(4) A, c = 36.558(2) A, alpha = beta = 90 degrees , gamma = 120 degrees , Z = 6, R1 = 0.0416, wR2 = 0.1190. Crystal data for 2 x H2O include the following: hexagonal, P61, a = b = 13.160(7) A, c = 36.559 (4) A, alpha = beta = 90 degrees , gamma = 120 degrees , Z = 6, R1 = 0.0574, wR2 = 0.1423.  相似文献   

6.
The "anti-crown" B-hexamethyl 9-mercuracarborand-3 (1) was shown to complex halide ions (I-, Br-, Cl-) in an eta(3)-sandwich fashion. Symmetry-allowed interactions of the filled halide ion p-orbitals and the corresponding empty mercury p-orbitals result in three equivalent p(Hg)-p(halide)-p(Hg) three-center two-electron bonds and a sandwich structure. The molecular structures of [Li.(H(2)O)(4)][1(2).I].2CH(3)CN, MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2), and PPN[1(2).Cl] were determined by single-crystal X-ray diffraction studies. Compound [Li.(H(2)O)(4)][1(2).I].2CH(3)CN crystallized in the triclinic space group P-1, a = 13.312(8) A, b = 13.983(9) A, c = 13.996(9) A, alpha = 61.16(2) degrees, beta = 82.34(2) degrees, gamma = 86.58(2) degrees, V = 4365(2) A(3), Z = 1, R = 0.063, and R(w) = 0.171. Compound MePPh(3)[1(2).Br].((CH(3))(2)CO)(2).(H(2)O)(2) crystallized in the monoclinic space group C2/c, a = 24.671(8) A, b = 17.576(6) A, c = 26.079(8) A, beta = 106.424(6) degrees, V = 10847(6) A(3), Z = 8, R = 0.0607, and R(w) = 0.1506. Compound PPN[1(2).Cl] crystallized in the monoclinic space group C2/m, a = 37.27(2) A, b = 29.25(1) A, c = 10.990(4) A, beta = 100.659(7) degrees, V = 11774(8) A(3), Z = 4, R = 0.0911, and R(w) = 0.2369.  相似文献   

7.
The title compound {Cu2(pdc)2(4,4′-bipy)(H2O)(3H2O}2 1 (H2pdc = pyridine-2,6- dicarboxylic acid, also known as dipicolinic acid; 4,4′-bipy = 4,4′-bipyridine) has been synthesized by the hydrothermal reaction and its structure was determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group Pī with a = 7.2278(3), b = 10.6259(4), c = 17.7614(6)A, α= 79.5990(10), β = 83.6300(10), γ = 71.8280(10)o, V = 1272.60(8)A3, C48H44Cu4N8O24, Mr = 1371.07, Z = 1, Dc = 1.789 g/cm3, μ = 1.747 mm-1, F(000) = 696, R = 0.0397 and wR = 0.1137 for 3938 observed reflections (I > 2σ(I)). There are two kinds of Cu coordination environments, and each central copper(II) atom is five-coordinated in a distorted square-based pyramidal coordination geo- metry. Four copper(II) atoms are linked by four pdc and two 4,4′-bipy ligands to form an annular rectangle structure. Extensive hydrogen-bonding interactions involving carboxylate O atoms as well as coordinated and free water molecules lead to the formation of a three-dimensional network struc- ture.  相似文献   

8.
1,2,4,5-Benzenetetracarboxylic acid (btcH(4)) reacts with Cu(NO(3))(2).6H(2)O to form 2D coordination polymeric structure [[Cu(2)(btc)(Py)(4).2H(2)O].4H(2)O](n), 1, in the presence of pyridine from water at room temperature. Puckered-boat-shaped hexameric water clusters resulting from four free water molecules and two water molecules coordinating to metal ions join these sheets to make a 3D network. These water clusters behave as pillars to join those sheets which is the key factor stabilizing the 3D network. Thermal analysis, X-ray powder diffraction, and X-ray structure analysis have been used to characterize this compound. Crystal data for 1 follow: triclinic space group P1, a = 8.905(3) A, b = 11.137(4) A, c = 17.484(2) A, alpha = 82.342(6) degrees, beta = 81.312(3) degrees, gamma = 82.361(4) degrees V= 1687.5(1)A(3), Z = 2, R1 = 0.0331, wR2 = 0.0886, S =1.066.  相似文献   

9.
Crystal structures of three Ni(CN)(4)(2)(-) salts all with eclipsed ligands and varying axial stacking arrangements are presented. The absorption spectra of all three salts show a slight red shift in the x,y-polarizations and a large red shift in their z-polarizations upon crystallization from solution. Semiempirical ZINDO calculations provide a good model of the solid state, even with only a three-molecule segment, allowing reproduction of the red-shifting and intensity increase upon crystallization found experimentally. The modified nickel beta(s,p) bonding parameter of -5 found appropriate for Ni coordination in our previous studies of single Ni(CN)(4)(2-) planes and a helically stacked Cs(2)[Ni(CN)(4)].H(2)O crystal was changed to -3 for the more parallel-stacked Ni(CN)(4)(2-) planes in this case, while beta(d) was retained at -41. Crystal data are as follows: Na(2)[Ni(CN)(4)].3H(2)O, triclinic space group P1, a = 7.2980(10) A, b = 8.8620(10) A, c = 15.132(2) A, alpha = 89.311(5) degrees, beta = 87.326(5) degrees, gamma = 83.772(6) degrees, V = 971.8(2) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.064; Sr[Ni(CN)(4)].5H(2)O, monoclinic space group C2/m, a = 10.356(2) A, b = 15.272(3) A, c = 7.1331(10) A, beta = 98.548(12) degrees, V = 1115.6(3) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.059; Rb(2)[Ni(CN)(4)].1.05H(2)O, triclinic space group P1, a = 8.6020(10) A, b = 9.6930(10) A, c = 12.006(2) A, alpha = 92.621(6) degrees, beta = 94.263(6) degrees, gamma = 111.795(10) degrees, V = 924.0(2) A(3), T = 100 K, Z = 4, R = 0.034, R(w) = 0.067.  相似文献   

10.
The title compound [In(H2ip)(pdc)(H2O)] (H3ip = 5-hydroxyisophthalic acid, H2Pdc = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21/c with a = 13.830(8), b = 6.488(4), c = 17.632(10)A^°, β = 92.510(10)°, C15H10InNO10, Mr= 479.06, V = 1580.6(15)A^°3, Z = 4, De= 2.013 g/cm^3, F(000) = 944,μ = 1.557 mm^-1, the final R = 0.0413 and wR = 0.0793 for 2950 observed reflections with I 〉 2σ(I). The In(Ⅲ) ion is seven-coordinated in a slightly distorted penta-bipyramidal geometry. The mixed ligands connect the In(Ⅲ) ions into 21 helical chains along the [010] direction, and the hydrogen bonds assemble the chains into a three-dimensional supramolecular network.  相似文献   

11.
The complexes [Rh(Tp)(PPh(3))(2)] (1a) and [Rh(Tp)(P(4-C(6)H(4)F)(3))(2)] (1b) combine with PhC(2)H, 4-NO(2)-C(6)H(4)CHO and Ph(3)SnH to give [Rh(Tp)(H)(C(2)Ph)(PR(3))] (R = Ph, 2a; R = 4-C(6)H(4)F, 2b), [Rh(Tp)(H)(COC(6)H(4)-4-NO(2))(PR(3))] (R = Ph, 3a), and [Rh(Tp)(H)(SnPh(3))(PR(3))] (R = Ph, 4a; R = 4-C(6)H(4)F, 4b) in moderate to good yield. Complexes 1a, 2b, 3a, and 4a have been structurally characterized. In 1a the Tp ligand is bidentate, in 2b, 3a, and 4a it is tridentate. Crystal data for 1a: space group P2(1)/c; a = 11.9664(19), b = 21.355(3), c = 20.685(3) A; beta = 112.576(7) degrees; V = 4880.8(12) A(3); Z = 4; R = 0.0441. Data for 2b: space group P(-)1; a = 10.130(3), b = 12.869(4), c = 17.038(5) A; alpha = 78.641(6), beta = 76.040(5), gamma = 81.210(6) degrees; V = 2100.3(11) A(3); Z = 2; R = 0.0493. Data for 3a: space group P(-)1; a = 10.0073(11), b = 10.5116(12), c = 19.874(2) A; alpha = 83.728(2), beta = 88.759(2), gamma = 65.756(2) degrees; V =1894.2(4) A(3); Z = 2; R = 0.0253. Data for 4a: space group P2(1)/c; a = 15.545(2), b = 18.110(2), c = 17.810(2) A; beta = 95.094(3) degrees; V = 4994.1(10) A(3); Z = 4; R = 0.0256. NMR data ((1)H, (31)P, (103)Rh, (119)Sn) are also reported.  相似文献   

12.
The new complexes trans-[a2Pt(Hpymo-N1)2]X2 (a = NH3, X = NO3 (1a); a = CH3NH2, X = NO3 (1b); a = CH3NH2, X = ClO4 (1c); Hpymo = 2-hydroxypyrimidine) have been prepared by reaction of trans-[a2Pt(H2O)2]-X2 with 2-hydroxypyrimidine at 80 degrees C in water. Complex 1c cocrystallizes in water with 2-aminopyrimidine (ampym) through formation of complementary pairs of hydrogen bonds to give the supramolecular hexagon [trans-[(CH3NH2)2Pt(pymo-N1)(Hpymo-N1)].Hampym[2(ClO4)4 (2). Molecular recognition of ampym by 1c is responsible for a conformational change of the two hydroxypyrimidine ligands in 1c from anti (1c) to syn and in addition for a proton transfer from a Hpymo residue to ampym against 1.5 units of pKa gradient. 1H NMR concentration-dependent studies as well as NOE experiments in dmso-d6 and dmf-d7 show that 2 dissociates in solution. Compound 1a reacts in NH3:H2O (1:3) with AgI to give the polymeric species [trans-[(NH3)2Pt(mu-pymo-N1,N3)2Ag(H2O)]-NO3]n (3). In contrast to 2, in the polymeric structure the trans-[NH3)2Pt(pymo)2] entities adopt an anti conformation. Nevertheless, the [(H2O)Ag(pymo)2] residues present a syn conformation that leads to a meander-like global structure. Compounds 1b, 1c, 2, and 3 have been studied by X-ray crystallography: (1b) triclinic space group, P1, a = 9.300(2) A, b = 10.483(2) A, c = 11.050(2) A, alpha = 68.21(3) degrees, beta = 75.47(3) degrees, gamma = 73.83(3) degrees, Z = 2, R1 = 0.025, and wR2 = 0.062; (1c) triclinic space group, P1, a = 5.692(1) A, b = 7.758(2) A, c = 11.236(2) A, alpha = 93.12(3) degrees, beta = 92.86(3) degrees, gamma = 102.58(3) degrees, Z = 2, R1 = 0.048, and wR2 = 0.119; (2) triclinic space group, P1, a = 8.355(2) A, b = 11.221(2) A, c = 13.004(3) A, alpha = 86.76(3) degrees, beta = 78.62(3) degrees, gamma = 77.96(3) degrees, Z = 2, R1 = 0.033, and wR2 = 0.080; (3) monoclinic space group, C2/c, a = 5.345(1) A, b = 23.998(5) A, c = 12.474(2) A, beta = 102.27(3) degrees, Z = 8, R1 = 0.041, and wR2 = 0.093.  相似文献   

13.
Four cobalt supramolecular architectures with Hmtyaa(2-(5-methyl-1,3,4-thiadiazol-2-ylthio)acetic acid) ligand have been synthesized.[Co(mtyaa)2(H2O)4]·4(H2O)(1):triclinic,space group P1 with a = 6.7537(18),b = 8.591(2),c = 10.615(3) ,α = 96.495(4),β = 99.955(5),γ = 103.615(5)°,V = 581.9(3) 3,Z = 1,Mr = 581.52,Dc = 1.659 g/m3,μ = 1.158 mm-1,F(000) = 301,Rint = 0.0557,R = 0.0377 and wR = 0.1056 for 1854 observed reflections with Ⅰ 2σ(Ⅰ);{[Co(4,4'-bipy)(H2O)4]·2(mtyaa)·2(H2O)}n(2):triclinic,space group P1 with a = 7.669(2),b = 8.840(3),c = 11.521(4) ,α = 79.912(5),β = 73.954(5),γ = 86.612(6)°,V = 738.9(4) 3,Z = 1,Mr = 701.67,Dc = 1.577 g/m3,μ = 0.924 mm-1,F(000) = 363,Rint = 0.0636,R = 0.0498 and wR = 0.1311 for 2155 observed reflections with Ⅰ 2σ(Ⅰ);{[Co(4,4'-bipy)(mtyaa)(H2O)3](mtyaa)·2(H2O)}(3):monoclinic,space group Pc with a = 7.7832(17),b = 11.527(3),c = 31.483(7) ,β = 91.952(4)°,V = 2822.9(11) 3,Z = 4,Mr = 683.65,Dc = 1.609 g/m3,μ = 0.963 mm-1,F(000) = 1412,Rint = 0.0758,R = 0.0609 and wR = 0.1095 for 5841 observed reflections with I 2σ(I);{[Co(bpe)(mtyaa)2(H2O)2]}n(4):monoclinic,space group C2/c with a = 19.290(11),b = 12.027(7),c = 14.865(8) ,β = 125.648(8)°,V = 2802(3)3,Z = 4,Mr = 657.66,Dc = 1.559 g/m3,μ = 0.959 mm-1,F(000) = 1356,Rint = 0.0456,R = 0.0332 and wR = 0.0985 for 2299 observed reflections with Ⅰ 2σ(Ⅰ).  相似文献   

14.
Rao KP  Rao CN 《Inorganic chemistry》2007,46(7):2511-2518
In our effort to explore the use of the sulfite ion to design hybrid and open-framework materials, we have been able to prepare, under hydrothermal conditions, zero-dimensional [Zn(C12H8N2)(SO3)].2H2O, I (a = 7.5737(5) A, b = 10.3969(6) A, c = 10.3986(6) A, alpha = 64.172(1) degrees , beta = 69.395(1) degrees , gamma = 79.333(1) degrees , Z = 2, and space group P), one-dimensional [Zn2(C12H8N2)(SO3)2(H2O)], II (a = 8.0247(3) A, b = 9.4962(3) A, c = 10.2740(2) A, alpha = 81.070(1) degrees , beta = 80.438(1) degrees , gamma = 75.66(5) degrees , Z = 2, and space group P), two-dimensional [Zn2(C10H8N2)(SO3)2].H2O, III (a = 16.6062(1) A, b = 4.7935(1) A, c = 19.2721(5) A, beta = 100.674(2) degrees , Z = 4, and space group C2/c), and three-dimensional [Zn4(C6H12N2)(SO3)4(H2O)4], IV (a = 11.0793(3) A, c = 8.8246(3) A, Z = 2, and space group P42nm), of which the last three are coordination polymers. A hybrid open-framework sulfite-sulfate of the composition [C2H10N2][Nd(SO3)(SO4)(H2O)]2, V (a = 9.0880(3) A, b = 6.9429(2) A, c = 13.0805(5) A, beta = 91.551(2) degrees , Z = 2, and space group P21/c), with a layered structure containing metal-oxygen-metal bonds has also been described.  相似文献   

15.
With the new substituted pyrazine ligand pyrazine-2,3-dicarboxylic acid bis[(pyridin-2-ylmethyl)amide], H(2)L, a binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) and two [2 x 2]G grid complexes, [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) and [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3), have been synthesized and characterized spectroscopically and crystallographically. The ligand H(2)L crystallized in the triclinic space group P1, with a = 4.9882(7) A, b = 12.079(2) A, c = 14.454(2) A, alpha = 107.08(2) degrees, beta = 98.61(2) degrees, gamma = 97.54(2) degrees, V = 808.8(2) A(3), Z = 2, R1 = 0.0747, and R(w) = 0.1829 for 1319 observed reflections [I > 2 sigma(I)]. The molecule is L-shaped with a strong intramolecular bifurcated hydrogen bond in half of the molecule. In the crystal the molecules are linked by an intermolecular hydrogen bond to form a 1D polymer. The binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) crystallized in the monoclinic space group P2(1)/a, with a = 8.6859(7) A, b = 28.060(2) A, c = 9.5334(9) A, beta = 107.89(1) degrees, V = 2211.2(3) A(3), Z = 4, R1 = 0.039, and R(w) = 0.097 for 1408 observed reflections [I > 2 sigma(I)]. There are two independent copper atoms both having square pyramidal geometry. Both coordinate to a pyrazine, a pyridine, and an amide N atom. Two chlorines complete the coordination sphere of one of the copper atoms, while one chlorine atom and a water molecule complete the coordination sphere of the other. The copper(II) [2 x 2] grid complex [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) crystallized in the triclinic space group P1, with a = 17.1515(14) A, b = 17.7507(13) A, c = 19.3333(15) A, alpha = 67.34(1) degrees, beta = 69.79(1) degrees, gamma = 71.50(1) degrees, V = 4980.3(7) A(3), Z = 2, R1 = 0.083, and R(w) = 0.207 for 5532 observed reflections [I > 2 sigma(I)]. The four Cu(II) atoms are octahedrally coordinated by two pyrazine, two pyridine, and two amide N atoms and occupy the corners of a [2 x 2] grid with edge lengths, Cu...Cu, varying from 7.01 to 7.39 A. The nickel(II) [2 x 2] grid complex [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3) crystallized in the monoclinic space group C2/c, with a = 16.3388(10) A, b = 29.754(2) A, c = 20.857(1) A, beta = 101.845(1) degrees, V = 9923.6(12) A(3), Z = 4, R1 = 0.050, and wR2 = 0.101 for 3391 observed reflections [I > 2 sigma(I)]. Here the complex possesses C(2) symmetry and again each metal atom is octahedrally coordinated to two pyrazine, two pyridine, and two amide N atoms. They occupy the corners of a [2 x 2] grid with an average edge length, Ni.Ni, of 6.97 A. Of the four anions (ClO(4)(-)'s in 2 and Cl(-)'s in 3) required to equilibrate the charges in the grid complexes, two are encapsulated, one above and one below the plane of the four metal atoms. The remaining two anions are located between the "wings" of the ligands. Magnetic susceptibility measurements indicate that the binuclear complex 1 is antiferromagnetic, with a J value of -15.07 cm(-1). This is larger than the J values found for the Cu(II) (2) and Ni(II) (3) grid complexes, which were -5.87 and -2.64 cm(-1), respectively. DFT calculations have been carried out to explain the difference in the J values found for complexes 1 and 2.  相似文献   

16.
Two novel coordination polymers, UO2(C5H2N2O4)(H2O) (1) and (UO2)Cu(C5H2N2O4)2(H2O)2 (2), have been prepared by the hydrothermal reaction of uranyl nitrate hexahydrate [(UO2(NO3)2.6H2O], 3,5-pyrazoledicarboxylic acid (H3pdc) and copper(II) nitrate hemipentahydrate (Cu(NO3)2.2.5H2O) and characterized by single-crystal X-ray diffraction, thermogravimetric analyses (TGA) and fluorescence spectroscopy. Compound 1 (monoclinic, P2(1)/c, a=6.9556(6)A, b=11.302(1)A, c= 10.5288(9)A, beta=90.057(2) degrees and Z=4) consists of a two-dimensional sheet containing uranyl hexagonal bipyramids. Compound 2 (triclinic, P-1, a=5.1014(7)A, b=7.6067(11)A, c=10.2910(15)A, alpha=72.380(3) degrees, beta=86.796(3) degrees, gamma=84.447(3) degrees and Z=1) consists of two-dimensional sheets. Both structures contain the linear UO2(2+) moiety and have extended networks built up from the H3pdc ligand. Compound 1 exhibits the characteristic UO(2)2+ emission spectra when it is excited at the ligand or uranium excitation wavelength. With the addition of the copper metal center in compound 2, the uranium emission is absent regardless of the excitation wavelength.  相似文献   

17.
The title compound [In(H2ip)(pdc)(H2O)] (H3ip = 5-hydroxyisophthalic acid, H2pdc = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21/c with a = 13.830(8), b = 6.488(4), c = 17.632(10) , β = 92.510(10)°, C15H10InNO10, Mr = 479.06, V = 1580.6(15) 3, Z = 4, Dc = 2.013 g/cm3, F(000) = 944, μ = 1.557 mm-1, the final R = 0.0413 and wR = 0.0793 for 2950 observed reflections with I > 2σ(I). The In(III) ion is seven-coordinated in a slightly distorted penta-bipyramidal geometry. The mixed ligands connect the In(III) ions into 21 helical chains along the [010] direction, and the hydrogen bonds assemble the chains into a three-dimensional supramolecular network.  相似文献   

18.
The symmetric rhenium(V) oxo Schiff base complexes trans-[ReO(OH2)(acac2en)]Cl and trans-[ReOCl(acac2pn)], where acac2en and acac2pn are the tetradentate Schiff base ligands N,N'-ethylenebis(acetylacetone) diimine and N,N'-propylenebis(acetylacetone) diimine, respectively, were reacted with monodentate phosphine ligands to yield one of two unique cationic phosphine complexes depending on the ligand backbone length (en vs pn) and the identity of the phosphine ligand. Reduction of the Re(V) oxo core to Re(III) resulted on reaction of trans-[ReO(OH2)(acac2en)]Cl with triphenylphosphine or diethylphenylphosphine to yield a single reduced, disubstituted product of the general type trans-[Re(III)(PR3)2(acac2en)]+. Rather unexpectedly, a similar reaction with the stronger reducing agent triethylphosphine yielded the intramolecularly rearranged, asymmetric cis-[Re(V)O(PEt3)(acac2en)]+ complex. Reactions of trans-[Re(V)O(acac2pn)Cl] with the same phosphine ligands yielded only the rearranged asymmetric cis-[Re(V)O(PR3)(acac2pn)]+ complexes in quantitative yield. The compounds were characterized using standard spectroscopic methods, elemental analyses, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic data for the structures reported are as follows: trans-[Re(III)(PPh3)2(acac2en)]PF6 (H48C48N2O2P2Re.PF6), 1, triclinic (P), a = 18.8261(12) A, b = 16.2517(10) A, c = 15.4556(10) A, alpha = 95.522(1) degrees , beta = 97.130(1) degrees , gamma = 91.350(1) degrees , V = 4667.4(5) A(3), Z = 4; trans-[Re(III)(PEt2Ph)2(acac2en)]PF6 (H48C32N2O2P2Re.PF6), 2, orthorhombic (Pccn), a = 10.4753(6) A, b =18.4315(10) A, c = 18.9245(11) A, V = 3653.9(4) A3, Z = 4; cis-[Re(V)O(PEt3)(acac2en)]PF6 (H33C18N2O3PRe.1.25PF6, 3, monoclinic (C2/c), a = 39.8194(15) A, b = 13.6187(5) A, c = 20.1777(8) A, beta = 107.7730(10) degrees , V = 10419.9(7) A3, Z = 16; cis-[Re(V)O(PPh3)(acac2pn)]PF6 (H35C31N2O3PRe.PF6), 4, triclinic (P), a = 10.3094(10) A, b =12.1196(12) A, c = 14.8146(15) A, alpha = 105.939(2) degrees , beta = 105.383(2) degrees , gamma = 93.525(2) degrees , V = 1698.0(3) A3, Z = 2; cis-[Re(V)O(PEt2Ph)(acac2pn)]PF6 (H35C23N2O3PRe.PF6), 5, monoclinic (P2(1)/n), a = 18.1183(18) A, b = 11.580(1) A, c = 28.519(3) A, beta = 101.861(2) degrees , V = 5855.9(10) A(3), Z = 4.  相似文献   

19.
在水热条件下合成了四个含混合配体4,4’-bipy和2,2’-bipy/phen的多酸配位聚合物[Cu(4,4’-bipy)(2,2’-bipy)2]2[SiW12O40]?4H2O (1),[Ag4(4,4’-bipy)3(2,2’-bipy)2][SiW12O40]?2H2O (2),[Cu(4,4’-bipy)(phen)]2[H3O]2[SiW12O40]?8H2O (3)和[Cu(4,4’-bipy-Cl)(phen)]2[H3O][PW12O40]?H2O (4) (bipy = 联吡啶,phen = 邻菲罗啉),通过红外光谱、热重、元素分析、X-单晶衍射对聚合物进行了表征,在苯乙烯催化环氧化反应中,3和4显示了较高的催化活性,这与结构中存在配位不饱和金属中心有关.  相似文献   

20.
The nine-membered [-Cu(II)-N-N-](3) ring of trimeric copper-pyrazolato complexes provides a sturdy framework on which water is twice deprotonated in consecutive steps, forming mu(3)-OH and mu(3)-O species. In the presence of excess chlorides the mu(3)-O(H) ligand is replaced by two mu(3)-Cl ions. The interconversion of mu(3)-OH and mu(3)-O and the exchange of mu(3)-O(H) and mu(3)-Cl are reversible, and the three species involved have been structurally characterized: [PPN][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(thf)].CH(2)Cl(2) (1a), monoclinic P2(1)/n, a = 10.055(2) A, b = 35.428(5) A, c = 15.153(2) A, beta = 93.802(3) degrees, V = 5386(1) A(3), Z = 4; [Bu(4)N][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)] (1b), triclinic P-1, a = 9.135(2) A, b = 13.631(2) A, c = 14.510(2) A, alpha = 67.393(2) degrees, beta = 87.979(2) degrees, gamma = 80.268(3) degrees, V = 1643.2(4) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-O)(mu-pz)(3)Cl(3)] (2), monoclinic P2/c, a = 12.807(2) A, b = 13.093(2) A, c = 23.139(4) A, beta = 105.391(3) degrees, V = 3741(1) A(3), Z = 2; [PPN](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)].0.75H(2)O.0.5CH(2)Cl(2) (3a), triclinic P-1, a = 14.042(2) A, b = 23.978(4) A, c = 25.195(4) A, alpha = 76.796(3) degrees, beta = 79.506(3) degrees, gamma = 77.629(3) degrees, V = 7988(2) A(3), Z = 4; [Bu(4)N](2)[Cu(3)(mu(3)-Cl)(2)(mu-pz)(3)Cl(3)] (3b), monoclinic C2/c, a = 17.220(2) A, b = 15.606(2) A, c = 20.133(2) A, beta = 103.057(2) degrees, V = 5270(1) A(3), Z = 4; [Et(3)NH][Cu(3)(mu(3)-OH)(mu-pz)(3)Cl(3)(pzH)] (4), triclinic P-1, a = 11.498(2) A, b = 11.499(2) A, c = 12.186(2) A, alpha = 66.475(3) degrees, beta = 64.279(3) degrees, gamma = 80.183(3) degrees, V = 1331.0(5) A(3), Z = 2. Magnetic susceptibility measurements show that the three copper centers of 2 are strongly antiferromagnetically coupled with J(Cu-Cu) = -500 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号