首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在有机相体系中利用ZnSe前驱体纳米晶制备过程中的富Se环境,以引入Cd2+的方式在相对温和的环境下通过控制Cd2+离子的加入量及调节反应时间,成功制备了ZnSe/CdSe核-壳复合结构纳米晶.利用X射线衍射(XRD)、透射电镜(TEM)、紫外-可见吸收光谱(UV-vis)和荧光光谱(FL)对其结构形貌以及光学性质进行表征和分析的结果表明,CdSe以外延生长的方式包覆在ZnSe纳米晶表面从而形成具有良好结晶性的核-壳复合结构,其荧光发射始终保持良好单色性,同时实现了在500~620nm可见光范围内的连续可调.  相似文献   

2.
Spectroelectrochemical experiments on wide-gap semiconductor nanocrystals (ZnSe and Mn(2+)-doped ZnSe) have allowed the influence of trap electrochemistry on nanocrystal photoluminescence to be examined in the absence of semiconductor band filling. Large photoluminescence electrobrightening is observed in both materials upon application of a reducing potential and is reversed upon return to the equilibrium potential. Electrobrightening is correlated with the transfer of electrons into nanocrystal films, implicating reductive passivation of midgap surface electron traps. Analysis indicates that the electrobrightening magnitude is determined by competition between electron trapping and photoluminescence (ZnSe) or energy transfer (Mn(2+)-doped ZnSe) dynamics within the excitonic excited state, and that electron trapping is extremely fast (k(trap) ≈ 10(11) s(-1)). These results shed new light on the complex surface chemistries of semiconductor nanocrystals.  相似文献   

3.
Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.  相似文献   

4.
Multiple CdSe and ZnSe semiconductor shells were grown on PbSe semiconductor spherical cores with monolayer control. For CdSe shell coating, we found that there was little room to further increase the quantum yields of freshly-made high-quality PbSe nanocrystals that already owned very high initial values because of their good surface status; but there was great improvement for the PbSe nanocrystals with low initial quantum yields because of the poor surface status. Nonetheless, the quantum yield for the latter case could not reach the former's value. Additional ZnSe shells on PbSe/CdSe could further increase the quantum yield and protect the nanocrystals from air oxidation. The observed phenomena in the synthesis of the PbSe/CdSe and PbSe/CdSe/ZnSe core/shell structures were explained through the carrier wave function expansion and the surface polarization.  相似文献   

5.
Alloyed ZnxCd1-xSe quantum dots (QDs) have been successfully prepared at low temperatures by reacting a mixture of Cd(ClO4)2 and Zn(ClO4)2 with NaHSe using cysteine as a surface-stabilizing agent. The photoluminescence (PL) spectra of the alloyed QDs are determined on the basis of the Zn2+/Cd2+ molar ratio, reaction pH, intrinsic Zn2+and Cd2+ reactivities toward NaHSe, concentration of NaHSe, and the kind of thiols. A systematic blue shift in emission wavelength of the alloyed QDs was found with the increase in the Zn mole fraction. This result provides clear evidence of the formation of ZnxCd1-xSe QDs by the simultaneous reaction of Zn2+ and Cd2+ with NaHSe, rather than the formation of separate CdSe and ZnSe nanocrystals or core-shell structure CdSe/ZnSe nanocrystals. The size and inner structure of these QDs are also corroborated by using high-resolution transmission electron microscopy and X-ray powder diffraction. To further understand the formation mechanism, the growth kinetics of Zn0.99Cd0.01Se was studied by measuring the PL spectra at different growth intervals. The results demonstrated that, in the initial stage of growth, Zn0.99Cd0.01Se has a structure with a Cd-rich core and a Zn-rich shell. The post-preparative irradiation of these QDs improved their PL properties, resulting in stronger emission.  相似文献   

6.
The concept, decoupling doping from nucleation and/or growth, allows us to dope nearly all nanocrystals in a given sample which is indicated by complete quenching of the host emission and bright emission from the dopants at characteristic wavelengths tunable in most parts of the visible window using a ZnSe host. In an extreme case, ZnSe coated MnSe nanocrystals (MnSe:ZnSe) emit similarly as commonly known doped nanocrystals. In comparison with CdSe nanocrystals, these alternative emitters not only are intrinsically less toxic but also show some unexpected and expected advantages: stable against thermal and environmental changes, zero reabsorption, and no Forster energy transfer. In addition to their applications to replace CdSe based nanocrystal emitters, the unique structure and properties of the doped nanocrystals are of interest for studying fundamental issues in the field.  相似文献   

7.
We report a two-step synthesis of highly luminescent CdS/ZnSe core/shell nanocrystals (emission quantum yields up to 50%) that can produce efficient spatial separation of electrons and holes between the core and the shell (type-II localization regime). Our synthesis involves fabrication of cubic-singony CdS core particles that are subsequently overcoated with a layer of ZnSe in the presence of surfactant-ligands in a noncoordinating solvent. Studies of different growth regime of the ZnSe shell indicate that one approach to obtaining high emission efficiencies is through alloying the CdS/ZnSe interface with CdSe, which leads to the formation of an intermediate ZnCdSe layer with a graded composition. We perform theoretical modeling of these core/shell nanocrystals using effective mass approximation and applying first-order perturbation theory for treating both direct electron-hole coupling and the core/shell interface-polarization effects. Using this model we determine the range of geometrical parameters of the core/shell structures that result in a type-II localization regime. We further applied this model to evaluate the degree of electron-hole spatial separation (quantified in terms of the electron-hole overlap integral) based on measured emission wavelengths. We also discuss the potential applicability of these nanocrystals in lasing technologies and specifically the possibility of single-exciton optical gain in type-II nanostructures.  相似文献   

8.
IntroductionSemiconductor nanocrystals show strong size-de-pendent properties when their size is similar to or smal-ler than the excition Bohr radius of the bulk materialsand quantum confinement occurs for the space-con-fined motion of the electrons and holes in the nano-re-gion of materials[1—5].Because of the excellent opticaland electronic properties,semiconductor nanocrystalsare currently being investigated as emitting materials forthin-film light-emitting devices(LED)[6,7],low-thresh-ol…  相似文献   

9.
Kinetic analysis on the nanocrystal solid-solution formation was performed by heat treating CdSe/ZnSe core/shell nanocrystals, synthesized via a typical TOP/TOPO approach, at different temperatures for different time periods. X-ray diffraction (XRD) peak shifts in Cd1-xZnxSe cores according to the solid-solution treatments were monitored and used for the estimation of the lattice parameter change. The degree of solid-solution formation was determined considering the compositional variation in Cd1-xZnxSe cores, which was obtained from the Vegard's law. The degree of solid-solution formation (x) was applied to Jander analysis, and an Arrhenius-type plot was produced using the slopes of Jander plots. The activation energy for solid-solution formation was determined as approximately 152 kJ/mol, which evidently indicates that the diffusion of Zn2+ ions in the CdSe-ZnSe system is the governing mechanism for the Cd1-xZnxSe solid-solution formation. The Jander equation to predict the solid-solution formation kinetics for the CdSe/ZnSe core/shell systems was completed using the reaction rate constant (k).  相似文献   

10.
A complex InAs/CdSe/ZnSe core/shell1/shell2 (CSS) structure is synthesized, where the intermediate CdSe buffer layer decreases strain between the InAs core and the ZnSe outer shell. This structure leads to significantly improved fluorescence quantum yield as compared to previously prepared core/shell structures and enables growth of much thicker shells. The shell growth is done using a layer-by-layer method in which the shell cation and anion precursors are added sequentially allowing for excellent control, and a good size distribution is maintained throughout the entire growth process. The CSS structure is characterized using transmission electron microscopy, as well as by X-ray diffraction and X-ray photoelectron spectroscopy which provide evidence for shell growth. The quantum yield for CSS with small InAs cores reaches over 70%-exceptional photoluminescence intensity for III-V semiconductor nanocrystals. In larger InAs cores there is a systematic decrease in the quantum yield, with a yield of approximately 40% for intermediate size cores down to a few percent in large cores. The CSS structures also exhibit very good photostability, vastly improved over those of organically coated cores, and transformation into water environment via ligand exchange is performed without significant decrease of the quantum yield. These new InAs/CdSe/ZnSe CSS nanocrystals are therefore promising near-IR chromophores for biological fluorescence tagging and optoelectronic devices.  相似文献   

11.
A generic modular synthetic strategy for the fabrication of a series of binary‐ternary group II‐VI and group I‐III‐VI coupled semiconductor nano‐heterostructures is reported. Using Ag2Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe‐AgInSe2, CdSe‐AgGaSe2, ZnSe‐AgInSe2, and ZnSe‐AgGaSe2. Among these, dispersive type‐II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi‐conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated.  相似文献   

12.
We report about the synthesis and optical properties of a composite metal-insulator-semiconductor nanowire system which consists of a wet-chemically grown silver wire core surrounded by a SiO2 shell of controlled thickness, followed by an outer shell of highly luminescent CdSe nanocrystals. With microphotoluminescence (micro-PL) experiments, we studied the exciton-plasmon interaction in individual nanowires and analyzed the spatially resolved nanocrystal emission for different nanowire length, SiO2-shell thickness, nanocrystal shape, pump power, and emission polarization. For an SiO2 spacer thickness of approximately 15 nm, we observed an efficient excitation of surface plasmons by excitonic emission of CdSe nanocrystals. For nanowire lengths up to approximately 10 microm, the composite metal-insulator-semiconductor nanowires ((Ag)SiO2)CdSe act as a waveguide for 1D-surface plasmons at optical frequencies with efficient photon outcoupling at the nanowire tips, which is promising for efficient exciton-plasmon-photon conversion and surface plasmon guiding on a submicron scale in the visible spectral range.  相似文献   

13.
We show that the length of the alkyl chain of surface ligands can shift the equilibrium between the wurtzite and zinc blende polytypes of CdSe nanocrystals. In-situ wide-angle X-ray scattering measurements reveal that short-chain (e.g., propyl) phosphonic acids stabilize CdSe nanocrystals with the zinc blende phase whereas octadecylphosphonic acid stabilize nanocrystals with the wurtzite phase. We also demonstrate how this effect can be used to improve the shape selectivity in the synthesis of anisotropic CdSe/CdS and ZnSe/CdS nanoheterostructures.  相似文献   

14.
Li S  Zhao Z  Liu Q  Huang L  Wang G  Pan D  Zhang H  He X 《Inorganic chemistry》2011,50(23):11958-11964
Metastable zinc blende CuInSe(2) nanocrystals were synthesized by a hot-injection approach. It was found that the lattice mismatches between zinc blende CuInSe(2) and ZnSe as well as CuInSe(2) and CuInS(2) are only 2.0% and 4.6%, respectively. Thus, alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a zinc blende structure have been successfully synthesized over the entire composition range, and the band gaps of alloys can be tuned in the range from 2.82 to 0.96 eV and 1.43 to 0.98 eV, respectively. These alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a broad tunable band gap have a high potential for photovoltaic and photocatalytic applications.  相似文献   

15.
A series of colloidal transition-metal-doped chalcogenide semiconductor nanocrystals (TM2+:CdSe, TM2+:CdS, etc.) has been prepared by thermal decomposition of inorganic cluster precursors. It is shown through extensive spectroscopic and structural characterization that the nanocrystals prepared following literature procedures for synthesis of TM2+:CdSe nanocrystals actually possess an unintended CdSe/TM2+:CdS core/shell morphology. The conditions required for successful formation of TM2+:CdSe and TM2+:CdS by cluster decomposition have been determined. Magneto-optical and photoluminescence spectroscopic results for this series of doped nanocrystals reveal major physical consequences of dopant localization within the shell and demonstrate the capacity to engineer dopant-carrier exchange interactions via core/shell doping strategies. The results presented here illustrate some of the remarkable and unexpected complexities that can arise in nanocrystal doping chemistries and emphasize the need for meticulous characterization to avoid false positives.  相似文献   

16.
Photocatalytic generation of hydrogen by using oleic acid‐capped CdS, CdSe, and CdS0.75Se0.25 alloy nanocrystals (quantum dots) has been investigated under visible‐light irradiation by employing Na2S and Na2SO3 as hole scavengers. Highly photostable CdS0.75Se0.25 alloy nanocrystals gave the highest hydrogen evolution rate (1466 μmol h?1 g?1), which was about three times higher than that of CdS and seven times higher than that of CdSe.  相似文献   

17.
Recent experiments have indicated that 3-mercapto-1-propanol ligands display a size-dependent binding energy of attachment to the surface of II-VI semiconductor nanocrystals. Using semiempirical calculations, we exhaustively calculate the energy of this bond at each surface site, for CdSe and CdSe/CdS core/shell nanocrystals ranging from 1.8 to 4.1 nm in diameter. Our results suggest that the experimentally observed changes in binding energy are due to the distribution of surface facets on the nanocrystals, and not related to the band gap, as proposed in the experimental paper.  相似文献   

18.
Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary spectroscopic, electrochemical and spectroelectrochemical investigations of both the functionalized poly(thiophene) and its composite with the nanocrystals, the latter being fabricated using the layer-by-layer (LbL) deposition technique. UV-Vis-NIR and Raman spectroelectrochemical investigations unequivocally show that the onset of the first anodic peak in the cyclic voltammogram of the copolymer can be attributed to the oxidation of the pi-conjugated backbone in the polymer chains. For this reason, it is possible to determine the width and the position of its band gap (corresponding to the pi-pi* transition) by UV-Vis spectroscopy combined with cyclic voltammetry. These studies show that the polymer exhibits a slightly larger band gap with the HOMO level insignificantly lower in energy (by 0.03 eV) as compared to the case of regioregular poly(3-hexylthiophene) of comparable degree of polymerization. Hydrogen bond interactions of the polymer with CdSe(MHT) in the molecular composite result in a hypsochromic shift of the band corresponding to the pi-pi* transition from 504 nm to 488 nm. This can be taken as a spectroscopic manifestation of the conformational changes induced by shortening of the conjugation length. The observed spectral modifications are consistent with electrochemically determined lowering of the polymer HOMO level (from -4.91 eV in the pure polymer to -4.99 eV in the composite). Cyclic voltammetry studies supported by spectroelectrochemistry also show that the redox stability of CdSe(MHT) in the molecular composite with P3HT-co-P3(ODAP)HT is lower than that determined for stearate-capped nanocrystals. Their irreversible oxidation starts at E = +0.7 V vs. Ag/0.1 M Ag(+)i.e. at potentials by ca. 0.3 V lower than the oxidation of stearate stabilized CdSe nanocrystals of the same size. We show that-despite these modifications-the alignment of the HOMO and LUMO levels of the composite components remains appropriate for its use in hybrid solar cells, which is demonstrated by the photovoltaic effect observed for the LbL-processed composite sandwiched between two electrodes.  相似文献   

19.
Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn2+-doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn2+-doped II–VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn2+-doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn2+-related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided.  相似文献   

20.
In this paper, we present a new procedure for the rapid synthesis of luminescent ZnSe nanocrystals in aqueous phase by microwave irradiation with controllable temperature. The effects of microwave irradiation and experimental conditions on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of pH value of reaction solutions, molar ratio of precursors, and heating time of microwave irradiation on the optical properties of the ZnSe nanocrystals. A series of nanocrystals with different size was prepared in 1 h, and the photoluminescence quantum yield reached up to 17% at the optimal reaction condition. The results of HRTEM and XRD showed that the as-prepared nanocrystals had high crystallinity. The characterizations of EDS spectra and elemental analysis showed that the sulfur content of nanocrystals increased with the growth of nanocrystals. We speculated that the structure of nanocrystals was an alloy ZnSe(S) shell on the surface of the ZnSe particles core. Furthermore, we found that the oxygen from air in the reaction vessel played an important role in the decomposition of the thiol group under microwave irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号