首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of NO3 free radical and N2O5 with laboratory flame soot was investigated in a Knudsen flow reactor at T = 298 K equipped with beam-sampling mass spectrometry and in situ REMPI detection of NO2 and NO. Decane (C10H22) has been used as a fuel in a co-flow device for the generation of gray and black soot from a rich and a lean diffusion flame, respectively. The gas-phase reaction products of NO3 reacting with gray soot were NO, N2O5, HONO, and HNO3 with HONO being absent on black soot. The major loss of NO3 is adsorption on gray and black soot at yields of 65 and 59%, respectively, and the main gas-phase reaction product is N2O5 owing to heterogeneous recombination of NO3 with NO2 and NO according to NO3 + {C} --> NO + products. HONO was quantitatively accounted for by the interaction of NO2 with gray soot in agreement with previous work. Product N2O5 was generated through heterogeneous recombination of NO3 with excess NO2, and the small quantity of HNO3 was explained by heterogeneous hydrolysis of N2O5. The reaction products of N2O5 on both types of soot were equimolar amounts of NO and NO2, which suggest the reaction N2O5 + {C} --> N2O3(ads) + products with N2O3(ads) decomposing into NO + NO2. The initial and steady-state uptake coefficients gamma 0 and gamma ss of both NO3 and N2O5 based on the geometric surface area continuously increase with decreasing concentration at a concentration threshold for both types of soot. gamma ss of NO3 extrapolated to [NO3] --> 0 is independent of the type of soot and is 0.33 +/- 0.06 whereas gamma ss for [N2O5] --> 0 is (2.7 +/- 1.0) x 10(-2) and (5.2 +/- 0.2) x 10(-2) for gray and black soot, respectively. Above the concentration threshold of both NO3 and N2O5, gamma ss is independent of concentration with gamma ss(NO3) = 5.0 x 10(-2) and gamma ss(N2O5) = 5.0 x 10(-3). The inverse concentration dependence of gamma below the concentration threshold reveals a complex reaction mechanism for both NO3 and N2O5. The atmospheric significance of these results is briefly discussed.  相似文献   

2.
The interaction of HONO with TiO(2) solid films was studied under dark conditions using a low pressure flow reactor (1-10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The reactive uptake of HONO to TiO(2) was studied as a function of HONO concentration ([HONO)(0) = (0.3-3.3) × 10(12) molecules cm(-3)), water concentration (RH = 3 × 10(-4) to 13%), and temperature (T = 275-320 K). TiO(2) surface deactivation upon exposure to HONO was observed. The measured initial uptake coefficient of HONO on TiO(2) surface was independent of the HONO concentration and showed slight negative temperature dependence (activation factor = -1405 ± 110 K). In contrast, the relative humidity (RH) was found to have a strong impact on the uptake coefficient: γ(0) = 1.8 × 10(-5) (RH)(-0.63) (calculated using BET surface area, 40% uncertainty) at T = 300 K. NO(2) and NO were observed as products of the HONO reaction with TiO(2) surface with sum of their yields corresponding to nearly 100% of the nitrogen mass balance. The yields of the NO and NO(2) products were found to be 42 ± 7% and 60 ± 9%, respectively, independent of relative humidity, temperature, and concentration of HONO under experimental conditions used. The contribution of aerosol to the total HONO loss in the boundary layer (calculated with initial uptake data for HONO on TiO(2) surface) showed the unimportance of this process in the atmosphere. In addition, the diffusion coefficient of HONO in He was determined to be D(HONO-He) = 490 ± 50 Torr cm(2) s(-1) at T = 300 K.  相似文献   

3.
The interaction of NO(2) with TiO(2) solid films was studied under UV irradiation using a low pressure flow reactor (1-10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. HONO, NO, and N(2)O were observed as the products of the reactive uptake of NO(2) to the illuminated TiO(2) surface with the sum of their yields corresponding nearly to 100% of the nitrogen mass balance. The yield of the products was measured as a function of different parameters such as irradiance intensity, relative humidity (RH), temperature, and concentrations of NO(2) and O(2). The yield of N(2)O was found to be 0.15 ± 0.05 independent of the experimental conditions. The distribution of the products between NO and HONO was found to be independent of temperature in the range T = 280-320 K and was governed by relative humidity: increase in RH led to lower NO and higher HONO yield, with a maximum of nearly 65% reached at ~5% RH. Presence of molecular oxygen was shown to shift the HONO/NO distribution to HONO at low RH (<5%) with no effect at higher RH where the HONO yield is maximum. The following values for the yield of the products of NO(2) interaction with pure TiO(2) under real atmospheric conditions can be recommended from this work: 0.65 ± 0.10, 0.05 ± 0.05, and 0.15 ± 0.05 for HONO, NO, and N(2)O, respectively. The mechanism of the photoinitiated heterogeneous reaction and possible atmospheric implications of the obtained results are discussed.  相似文献   

4.
We used a Combustion Aerosol Standard burner unit that affords controlled and adjustable flame conditions, and adapted it for use with liquid fuel. We prepared samples of hexane soot under different well‐defined combustion conditions, and probed the chemical properties of hexane soot by using its heterogeneous interaction with NO2 in a Knudsen flow reactor. Soot generated under conditions of fuel to oxygen ratio near stoichiometry (λ = 0.82) produced HONO as the main product. Yields of HONO decreased for soot generated under lean conditions (λ = 0.16). Finally, NO was the principal product of the reaction for soot generated under extremely lean conditions (λ = 0.09) corresponding to the lower flammability limit. We may conclude that the combustion conditions determined surface properties gauged by the heterogeneous NO2–soot interaction. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 620–631, 2002  相似文献   

5.
The hydrolytic disproportionation of gaseous NO(2) on water's surface (2 NO(2) + H(2)O → HONO + NO(3)(-) + H(+)) (R1) has long been deemed to play a key, albeit unquantifiable role in tropospheric chemistry. We recently found that (R1) is dramatically accelerated by anions in experiments performed on aqueous microjets monitored by online electrospray mass spectrometry. This finding let us rationalize unresolved discrepancies among previous laboratory results and suggested that under realistic environmental conditions (R1) should be affected by everpresent surfactants. Herein, we report that NO(2)(g) uptake is significantly enhanced by cationic surfactants, weakly inhibited by fulvic acid (FA, a natural polycarboxylic acid) and anionic surfactants, and unaffected by 1-octanol. Surfactants appear to modulate interfacial anion coverage via electrostatic interactions with charged headgroups. We show that (R1) should be the dominant mechanism for the heterogeneous conversion of NO(2)(g) to HONO under typical atmospheric conditions throughout the day. The photoinduced reduction of NO(2) into HONO on airborne soot might play a limited role during daytime.  相似文献   

6.
The photolysis of ortho-nitrophenols: a new gas phase source of HONO   总被引:1,自引:0,他引:1  
Formation of nitrous acid (HONO) in the gas phase has been observed for the first time in a flow tube photoreactor upon irradiation (lambda = 300-500 nm) of 2-nitrophenol and methyl substituted derivatives using a selective and sensitive instrument (LOPAP) for the detection of HONO. Formation of HONO by heterogeneous NO2 photochemistry has been excluded, since production of NO2 under the experimental conditions is negligible. Variation of the surface to volume ratio and the nitrophenol concentration showed that the photolysis occurred in the gas phase indicating that HONO formation is initiated by intramolecular hydrogen transfer from the phenolic OH group to the nitro group. From the measured linear dependence of the HONO formation rate on the reactant's concentration and photolysis light intensity, a non-negligible new HONO source is proposed for the urban atmosphere during the day. Unexpectedly high HONO mixing ratios have been observed recently in several field campaigns during the day. It is proposed that the photolysis of aromatic compounds containing the ortho-nitrophenol entity could help to explain, at least in part, this high contribution of HONO to the oxidation capacity of the urban atmosphere.  相似文献   

7.
The uptake of HNO(3) on aviation kerosene (TC-1) soot was measured as a function of temperature (253-295 K) and the partial pressure of HNO(3), and the uptake of HNO(3) on hexane soot was studied at 295 K and over a limited partial pressure of HNO(3). The HNO(3) uptake was mostly reversible and did not release measurable amounts of gas-phase products such as HONO, NO(3), NO(2) or N(2)O(5). The heat of adsorption of HNO(3) on soot was dependent on the surface coverage. The isosteric heats of adsorption, Delta(0)H(isosteric), were determined as a function of coverage. Delta(0)H(isosteric) values were in the range -16 to -13 kcal mol(-1). The heats of adsorption decrease with increasing coverage. The adsorption data were fit to Freundlich and to Langmuir-Freundlich isotherms. The heterogeneity parameter values were close to 0.5, which suggested that a HNO(3) molecule can occupy two sites on the surface with or without being dissociated and that the soot surface could be nonuniform. Surface FTIR studies on the interaction of soot with HNO(3) did not reveal formation of any minor product such as organic nitrate or nitro compound on the soot surface. Using our measured coverage, we calculate that the partitioning of gas-phase nitric acid to black carbon aerosol is not a significant loss process of HNO(3) in the atmosphere.  相似文献   

8.
Physicochemical and catalytic properties of compositions Fe(Ce)–Mn–O/support (gamma-, theta-, alpha-Al2O3, SiO2 as the support) and Pt/CeO2/theta-Al2O3 for oxidation of soot were characterized. It was established that the phase composition of the initial catalysts depended mainly on the nature of the active component and preparation conditions. Non-isothermal treatment of the soot–catalyst compositions at the temperature up to 1000 °C resulted in a change in the phase composition depending mainly on the final treatment temperature. The catalyst surface area was determined by the support nature. It was established that catalyst activities for oxidation of soot are determined by both catalyst nature and composition of gas mixture. The process of the soot oxidation is thought to involve oxygen from the catalyst surface. The higher proportion of weakly bound surface oxygen, the higher was the catalyst activity. An increase in the oxygen concentration from 5% O2/N2 to 15% O2/N2 is shown to lead to a decrease of the temperature of the soot oxidation. The influence of the oxygen concentration on the process of soot oxidation becomes weaker in the presence of water vapor. Results showed that the presence of NO in the gas mixture favors a decrease in the oxidation temperature of the soot, the higher being the nitrogen oxide concentration, the more pronounced effect. Introduction of SO2 in amount of 50 ppm in the gas mixture has no noticeable effect on the process of the soot oxidation. Among the catalysts under study, Fe–Mn–K–O/gamma-Al2O3 is most effective to oxidation of the soot at otherwise identical conditions.  相似文献   

9.
A study of the pyrolysis of two hydrocarbons, C2H2 and C2H4, at different temperatures has been carried out in order to compare their behaviour in terms of soot and gas yields and gas composition. Pyrolysis experiments have been performed in the same conditions for both hydrocarbons: an inlet hydrocarbon concentration of 15,000 ppmv and a temperature range of 1000–1200 °C. For C2H2 and C2H4 pyrolysis tests, the results present the same trend when increasing the temperature: an increase in soot yield, a decrease in gas yield and a similar evolution of the outlet gases. Comparatively, it can be observed that acetylene is a more sooting hydrocarbon than ethylene for a given temperature. Additionally, the study of soot reactivity with O2 and NO shows that the soot samples obtained from ethylene show a slightly higher reactivity towards O2 and NO than the soot samples formed from acetylene.  相似文献   

10.
采用共沉淀法制备了不同Y含量的MnOx-CeO2-Y2O3催化剂,并用于NOx存在条件下的碳烟氧化反应.通过在干空气气流中800°C焙烧12 h评价了这些催化剂的热稳定性.采用X射线衍射、N2吸附-脱附、拉曼光谱、H2程序升温还原、储氧量测试、NO程序升温氧化、X射线光电子能谱和碳烟程序升温氧化等手段对催化剂进行了表征.实验发现,Y的添加导致催化剂比表面积、还原性能和储氧能力下降,从而影响了NO和碳烟的氧化活性.然而,热老化之后, Y可增大催化剂的热稳定性,其中以6%–10%Y的添加效果最好,它们的最大碳烟氧化速率温度仅增加了34–35°C. MnOx-CeO2催化剂的催化活性和热失活与其表面的Mn4+和氧物种密切相关.  相似文献   

11.
Although heterogeneous chemistry on surfaces in the troposphere is known to be important, there are currently only a few techniques available for studying the nature of surface-adsorbed species as well as their chemistry and photochemistry under atmospheric conditions of 1 atm pressure and in the presence of water vapor. We report here a new laboratory approach using a combination of long path Fourier transform infrared spectroscopy (FTIR) and attenuated total reflectance (ATR) FTIR that allows the simultaneous observation and measurement of gases and surface species. Theory is used to identify the surface-adsorbed intermediates and products, and to estimate their relative concentrations. At intermediate relative humidities typical of the tropospheric boundary layer, the nitric acid formed during NO2 heterogeneous hydrolysis is shown to exist both as nitrate ions from the dissociation of nitric acid formed on the surface and as molecular nitric acid. In both cases, the ions and HNO3 are complexed to water molecules. Upon pumping, water is selectively removed, shifting the NO(3-)-HNO3(H2O)y equilibria toward more dehydrated forms of HNO3 and ultimately to nitric acid dimers. Irradiation of the nitric acid-water film using 300-400 nm radiation generates gaseous NO, while irradiation at 254 nm generates both NO and HONO, resulting in conversion of surface-adsorbed nitrogen oxides into photochemically active NO(x). These studies suggest that the assumption that deposition or formation of nitric acid provides a permanent removal mechanism from the atmosphere may not be correct. Furthermore, a potential role of surface-adsorbed nitric acid and other species formed during the heterogeneous hydrolysis of NO2 in the oxidation of organics on surfaces, and in the generation of gas-phase HONO on local to global scales, should be considered.  相似文献   

12.
Nitrous acid (HONO) has been observed to build in the atmosphere of cities during the nighttime hours and it is suspected that photolysis of HONO may be a significant source of HO radicals early in the day. The sources of HONO are poorly understood, making it difficult to account for nighttime HONO formation in photochemical modeling studies of urban atmospheres, such as modeling of urban O3 formation. This paper reviews the available information on measurements of HONO in the atmosphere and suggest mechanisms of HONO formation. The most extensive atmospheric measurement databases are used to investigate the relations between HONO and potential precursors. Based on these analyses, the nighttime HONO concentrations are found to correlate best with the product of NO, NO2 and H2O concentrations, or possibly the NO, NO2, H2O, and aerosol concentrations. A new mechanism for nighttime HONO formation is proposed that is consistent with this precursor relationship, namely, reaction of N2O3 with moist aerosols (or other surfaces) to form two HONO molecules. Theoretical considerations of the equilibrium constant for N2O3 formation and the theory of gas-particle reactions show that the proposed reaction is a plausible candidate for HONO formation in urban atmospheres. For photochemical modeling purposes, a relation is derived in terms of gas phase species only (i.e., excluding the aerosol concentration): NO + NO2 + H2O → 2 HONO with a rate constant of 1.68 x 10-17 e6348/T (ppm-2 min-1). This rate constant is based on an analysis of ambient measurements of HONO, NO, NO2 and H2O, with a temperature dependence from the equilibrium constant for formation of N2O3. Photochemical grid modeling is used to investigate the effects of this relation on simulated HONO and O3 concentrations in Los Angeles, and the results are compared to two alternative sources of nighttime HONO that have been used by modelers. Modeling results show that the proposed relation results in HONO concentrations consistent with ambient measurements. Furthermore, the relation represents a conservative modeling approach because HONO production is effectively confined to the model surface layers in the nighttime hours, the time and place for which ambient data exist to show that HONO formation occurs. The empirical relation derived here should provide a useful tool for modelers until such time as knowledge of the HONO forming mechanisms has improved and more quantitative relations can be derived.  相似文献   

13.
采用柠檬酸络合法制备LaMnO3和La0.8K0.2MnO3钙钛矿催化剂,运用程序升温氧化(TPO)考察在不同反应气氛下催化燃烧碳烟的活性,并通过XRD,O2-TPD,NO-TPD,XPS以及NO预处理后O2-TPD等技术对催化剂进行表征和分析。结果表明,NO的存在促进了碳烟的催化氧化,但是对LaMnO3和La0.8K0.2MnO3氧化碳烟的促进效果不同。这与催化剂表面氧空位和活性氧物种有密切联系。  相似文献   

14.
The reaction of phenols with nitrite (nitrous acid HONO, or its conjugated base, NO2?) is of importance in stomach fluids (low pH) and in atmospheric hydrometeors (mild acid and basic pH). The initial reaction associated with the oxidation/nitration of 4‐substitued phenols promoted by HONO/NO2 depends on the pH of the solution. At low pH, the initial step involves the reaction between HONO and phenol, whereas at basic conditions this involves an electron transfer from the phenoxy anion to nitrogen dioxide (NO2) producing the nitrite anion. The rate of both processes is determined by the donor capacity of the substituent at the 4‐position of the phenol, and the data obtained at pH 2.3 follow a linear Hammett‐type correlation with a slope equal to –1.23. The partition of the gaseous intermediates (NO and NO2) makes the rate of HONO‐mediated oxidation dependent on their gas–liquid distribution. At low pH, the main process is phenol oxidation, even in oxygen‐free conditions, and the presence of any 4‐substituted phenol decreases the rate of HONO auto‐oxidation.  相似文献   

15.
采用固态离子交换法制备了系列一价铜改性的ZSM-5催化剂,结合多种表征手段,研究了一价铜改性对碳烟氧化反应催化活性的影响。结果表明,采用固态离子交换法可以制备出高负载量的一价铜改性Cu/ZSM-5分子筛催化剂,而不会破坏ZSM-5分子筛原有微孔结构;随催化剂中一价铜比例的增加,低温还原峰和高温还原峰均向低温段移动,且低温还原峰面积增加。改性催化剂对碳烟氧化反应的催化活性随改性元素比例变化先增加后降低;当铜改性比例超过11%后,铜物种的分散性及催化剂对碳烟氧化反应的催化活性均恶化。同时研究还发现,反应气氛中通入NO可以改善催化剂对碳烟氧化反应的催化效果。  相似文献   

16.
A new method for the measurement of trace amounts of HONO has been developed. Nitrous acid in the ambient air is absorbed in an aqueous solution by an air-dragged aqua-membrane-type denuder. The absorbed nitrite is reacted with 2,3-diaminonaphthalene, and the formed 1-naphthotriazol is measured using a fluorescence method. The calibration curve of HONO shows a straight line from 0 to 4000 ppt, and the detection limit is estimated to be 8.1 ppt calculated as being three times of the base line noise. The time resolution, which is defined as the time required to become a constant value by changing from 0 to ca. 1000 ppt was 2 min. The present method is not affected by NO(2), NO, SO(2), O(3) NH(3) or mixtures of these gases and organic nitrate, organic carboxylic acids, alcohols and aldehydes. The determination results of HONO concentrations in the ambient air by the present method are in good agreement with those by the annular denuder system and the differential optical absorption method.  相似文献   

17.
We investigated the heterogeneous processes that contribute towards the formation of N2O in an environment that comes as closely as possible to exhaust conditions containing NO and SO2 among other constituents. The simultaneous presence of NO, SO2, O2, and condensed phase water in the liquid state has been confirmed to be necessary for the production of significant levels of N2O. The maximum rate of N2O formation occurred at the beginning of the reaction and scales with the surface area of the condensed phase and is independent of its volume. The replacement of NO by either NO2 or HONO significantly increases the rate constant for N2O formation. The measured reaction orders in the rate law change depending upon the choice of the nitrogen reactant used and were fractional in some cases. The rate constants of N2O formation for the three different nitrogen reactants reveal the following series of increasing reactivity: NO < NO2 < HONO, indicating the probable sequential involvement of those species in the elementary reactions. Furthermore, we observed a complex dependence of the rate constant on the acidity of the liquid phase where both the initial rate as well as the yield of N2O are largest at pH=0 of a H2SO4/H2O solution. The results suggest that HONO is the major reacting N(III) species over a wide range of acidities studied. The N2O formation in synthetic flue gas may be simulated using a relatively simple mechanism based on the model of Lyon and Cole. The first step of the complex overall reaction corresponds to NO oxidation by O2 to NO2 mainly in the gas phase, with the presence of both H2O and active surfaces significantly accelerating NO2 production. Subsequently, NO2 reacts with excess NO to obtain HONO which reacts with S(IV) to result in N2O and H2SO4 through a complex reaction sequence probably involving nitroxyl (HON) and its dimer, hyponitrous acid. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29 : 869–891, 1997.  相似文献   

18.
Several recent experimental studies have provided substantial new constraints for the mechanisms on the HNO3 potential energy surface. These include observations of biexponential OH decay over short time scales from OH + NO2, which constrain key properties of the short-lived HOONO intermediate, observations of both conformers of the HOONO intermediate itself, isotopic scrambling data for 18OH + NO2, and observations of HONO2 production from the HO2 + NO reaction. We combine all of these recent data in a master-equation simulation of the system. This simulation is initialized with computational values for both stable species (wells) and transition states, but parameters are then adjusted to fit the observations. All parameters are kept within limits defined by experimental and theoretical uncertainty, and all converge away from their bounds. The primary fitting is carried out on the OH kinetic data-we first fit the biexponential kinetics, then address the isotopic scrambling. Isotopic scrambling is shown to be rapid but not complete at low pressure, while at least two parameter sets are shown to be consistent with the biexponential data. Of these two parameter sets, one is far more consistent with recent observations of trans-HOONO decay, isotopic scrambling, and HONO2 production from HO2 + NO. This we regard as the most probable potential energy surface for the reaction. On this PES, cis-trans isomerization for HOONO is slow but isomerization of trans-HOONO to HONO2 is rapid. This has significant implications for observed HOONO behavior and also HONO2 formation in the atmosphere from both HO2 + NO and OH + NO2.  相似文献   

19.
用共沉淀法制备的复合氧化物MnOx-CeO2,其程序升温氧化(TPO)结果显示,1 000 mL.m-3NO和10%O2条件下MnOx-CeO2对应的碳烟起燃温度Ti为250~303℃,远低于无催化剂时的Ti(402℃)及CeO2的Ti(334℃);也低于无NO下MnOx-CeO2的Ti(346~360℃);与MnOx的Ti(290℃)相当,但MnOx-CeO2的Tm(413~441℃)仍比MnOx的Tm(441℃)稍低。明显地,NO促进了碳烟的氧化,MnOx-CeO2比CeO2和MnOx的活性都要高。NO-TPD、FT-IR及原位DRIFTs表明,MnOx-CeO2表面对NO吸附能力强,更易促进NO氧化和NOx储存,从而有利于碳烟的氧化。可能的机理为,富氧条件下气相O2推动催化剂中氧物种(如超氧O2-,化学弱吸附氧O-与晶格氧O2-)的形成(含相互转化)与迁移,推进了NO或NO2-的氧化;储存的NOx在低温下生成硝酸根离子,在高温时则释放出高活性的NO2*和O-,促进碳烟氧化,其中间产物包括C-NO2复合物与C(O)复合物。  相似文献   

20.
采用柠檬酸配合燃烧法和共沉淀法制备了MnOx(0.4)-CeO2催化剂,用于模拟碳烟的燃烧.通过XRD、BET、Raman、H2-TPR、O2-TPD与XPS表征催化剂的结构和表面活性物种,并借助原位拉曼研究碳烟的催化氧化机理.结果表明柠檬酸配合燃烧法制备的MnOx(0.4)-CeO2-CA催化剂中有更多的Mn进入了CeO2的立方萤石结构,比表面积更大,氧空位、Mn4+和Ce4+更多,因而氧化还原性能更好,催化氧化碳烟的活性更高.O-在碳烟的氧化中起重要作用,Mn4+和Ce4+有利于氧化反应的进行,氧空位的增加能提高氧的吸附、迁移和转化能力,促进了碳烟的氧化.反应路径为O-溢出参与碳烟的氧化,同时产生氧空位,部分晶格氧O2-补充O-,气相氧不断吸附到氧空位上得到活化生成O2-,O2-转化为O-(可进一步转化为O2-),O-迁移至碳烟颗粒表面参与反应,生成CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号