共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了以Ce,Nd和Pr部分替代LaNi(3.5)Co(0.8)Mn(0.4)Al(0.3)中的La后对合金电化学及储氢特性的影响。稀土含量的变化明显改变合金的电化学及储氢特性。Pr对合金的电化学性能影响小于Ce。Ce使合金的放电容量降低,并升高合金的氢分解压。随着Nd含量的增加,合金的放电容量降低。 相似文献
2.
研究了不同铸锭厚度(1~10mm)对薄壁铸造的铸态和退火态LPCNi3.55Co0.75Mn0.4Al0.3贮氢合金电化学性能的影响。结果发现:铸态LPCNi3.55Co0.75Mn0.4Al0.3合金的0.2C放电容量随着合金锭厚度的增加有增大的趋势。10mm厚铸态合金的活化性能优于其它厚度的合金,且在1C的放电容量和循环稳定性比在其它厚度的高。主要原因应归结为该厚度合金具有更大的晶胞体积和更小的晶格应力。退火态3mm LPCNi3.55Co0.75Mn0.4Al0.3合金的综合电化学性能比铸态更优异,6mm合金的循环稳定性和3~6mm合金的活化性能得到改善。主要原因应归结为晶格应力的极大释放以及Mn等元素偏析的改善。 相似文献
3.
4.
为了解Pr取代La对La-Mg-Ni系(AB3.5型)储氖合金性能的影响,研究了La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0.0~0.2)储氢合金电化学性能,重点考察了其电化学动力学特性.试验表明,Pr取代La使合金的储氢容量有所降低,但循环稳定性没有明显的变化.Pr取代La对合金的电化学动力学性能产生了明显的影响,随Pr的添加,合金电极在放电电流密度为1800 mA·g-1的高倍率放电能力(HRD)从26.0%(x=0.0)显著地增加到60.0%(x=0.1),然后缓慢减小到55.8%(x=0.2).电化学阻抗谱、线性极化曲线、阳极极化曲线及氢扩散系数测量结果均表明,合金中添加Pr改善了合金电极的电化学动力学特性. 相似文献
5.
La0.8-xPrxMg0.2Ni3.2Co0.4Al0.2(x=0~0.4)储氢合金的相结构与电化学性能 总被引:1,自引:0,他引:1
研究了Pr替代La对La0.8-xPrxMg0.2Ni3.2Co0.4Al0.2(X=0~0.4)储氢合金相结构与电化学性能的影响。XRD及Rietveld全谱拟合方法分析表明,合金主要由PrsCo-9,Ce5Co-9及CaCu5型物相组成。随着Pr含量x值的增加,合金中A5B19型物相(Pr5Co19+Ce5Co19)逐渐增多,同时各物相的晶胞参数(a,c)和晶胞体积(y)均减小。电化学测试表明,x值的增加对合金电极的活化性能影响不大,但可显著提高合金电极的循环稳定性。合金的高倍率放电性能(HRD)随着x的增加呈增加趋势,在x=0.3时存在最大值(HRD900=89.6%);合金电极的HRD主要由合金电极表面的电荷迁移速率所控制。 相似文献
6.
通过电弧熔炼制备了无镁La-Y-Ni系A2B7型Y0.7La0.3Ni3.25Al0.1Mn0.15合金, 并在高纯0.2 MPa Ar气氛下分别对合金进行850~1050 ℃真空24 h退火热处理. 通过X射线衍射(XRD)、 中子衍射(ND)、 扫描电子显微镜/能量分散谱(SEM/EDS)和电化学测试方法研究了退火温度对合金结构和性能的影响. 结构分析表明, 铸态合金由CaCu5, Ce5Co19, Gd2Co7, Ce2Ni7多相构成, 随着退火温度升高, CaCu5, Ce5Co19, Gd2Co7相逐步减少直至消失, Ce2Ni7主相相丰度逐步增加. 900~950 ℃退火时, 合金为单相Ce2Ni7结构. 退火温度继续升高, 合金中出现少量PuNi3相. 合金电极的最大放电容量随着退火温度的升高先增加后降低. 从铸态的307.6 mA·h/g增加到900 ℃退火时的最大值393.1 mA·h/g, 后又降到1050 ℃退火时的366.4 mA·h/g. 合金电极的电化学循环稳定性随退火温度的升高而升高, 循环100次后电化学容量保持率(S100)从铸态的66%上升到1050 ℃退火后的88.5%, 900~950 ℃退火时, 合金电极具有较好的综合电化学性能. 相似文献
7.
为提高La-Mg-Ni基储氢合金La0.73Ce0.18Mg0.09Ni3.20Al0.21Mn0.10Co0.60的电化学性能,由5-溴水杨酸和苯胺合成了一种席夫碱作为表面改性剂,对储氢合金进行表面处理。 从紫外与红外图谱可知,合成了目标席夫碱。 添加1%席夫碱后,合金的相结构没有改变。 与未添加席夫碱的合金电极相比,电极的最大放电容量略有下降,但50次充放电循环后合金电极的容量保持率有较大幅度提高,添加5%席夫碱的电极容量保持率从63%提高到75%,高倍率放电性能也有增加。 经表面处理后,合金电极的交换电流密度I0与极限电流密度IL均有大幅度提高,动电位极化曲线也表明合金电极的抗腐蚀能力变强。 以上结果均表明,添加少量席夫碱有助于改善储氢合金电极的电化学性能。 相似文献
8.
在氩气气氛和1173 K保温条件下对La0.63 Gd0.2 Mg0.17Ni3.1 Co0.3 Al0.1储氢合金进行不同时间(t=8 ~168 h)的热处理,采用电感耦合等离子发射光谱(ICP)、X射线衍射(XRD)、电子探针显微分析方法(EPMA)和电化学测试分析方法对比研究了退火时间对合金显微组织演化和电化学性能的影响.研究结果表明,铸态合金组织由Ce2 Ni7型、Gd2Co7型、Pr5 Co19型、PuNi3型和CaCu5型相组成,其Ce2 Ni7型相的丰度为78.9%,随退火时间的延长,退火合金中Ce2 Ni7型相的丰度逐渐增加,当退火时间t=168 h时其相丰度达到94.5%,Ce2 Ni7型相结构的晶胞参数和晶胞体积随退火时间增加而减小.电化学测试分析表明,退火合金电极的电化学性能与Ce2 Ni7型相的丰度有密切关系,退火时间对合金电极的活化性能影响不大,但合金电极放电容量随退火时间的延长逐渐提高,当t=168 h时,合金电极放电容量达到最大值386.8mAh·g-1;退火时间对合金电极循环稳定性的提高和改善有不同程度的影响,当退火时间t=16~168 h时,经100次充放电循环后,其电极容量保持率S100=90.3%~91.5%.热处理能有效改善合金电极电化学反应的动力学性能,但不同退火时间对合金电极的高倍率放电性能影响不明显. 相似文献
9.
研究了不同铸锭厚度(1~10mm)对薄壁铸造的铸态和退火态LPCN3.55Co0.75Mn0.4Al0.3-一种新型贮氢合金电化学性能的影响。结果发现:铸态LPCNi3.55Co0.75Mn0.4Al0.3合金的0.2C放电容量随着合金锭厚度的增加有增大的趋势。10mm厚铸态合金的活化性能优于其它厚度的合金,且在1C的放电容量和循环稳定性比在其它厚度高。主要原因应归结为该厚度合金具有更大的晶胞体积和更小的晶格应力。退火态3mm LPCNi3.55Co0.75Mn0.4Al0.3合金的综合电化学性能比铸态更优异,6mm合金的循环稳定性和3~6mm合金的活化性能得到改善。主要原因应归结为晶格应力的极大释放以及Mn等元素偏析的改善。 相似文献
10.
镍氢电池是目前国内外混合动力汽车的首选电池,但随着稀土价格的不断上涨,稀土元素占其成本的比例约由14%逐步提升到55%,开发无镨、钕的高丰度镧铈稀土元素AB5型储氢材料,有助降低混合动力车用镍氢电池负极材料的成本。采用中频感应熔炼配合快淬甩带工艺制备了LaxCe1-x(NiCoMnAl)5(x=0.8,0.6,0.4)合金,并研究了合金A,B侧各元素的比例以及制备工艺对合金储氢性能及电化学性能的影响。结果表明,随着x的降低,合金的储氢量和放电容量逐渐降低。当x=0.6时,合金电极具有较好的综合电化学性能,最大放电容量达到332.81 mAh.g-1,充放电循环寿命达(715 mA.g-1,80%容量保持率,下同)215次。对该合金B侧Mn,Al含量进行优化后,原材料中的Co含量减少,合金的最高电化学容量可达319.01 mAh.g-1。合金在氩气氛保护下进行退火处理后,结晶度和均匀性上升,电化学容量有所降低,但循环稳定性得到明显改善。其中,经950℃/2 h退火处理的LaxCe1-x(NiCoMnAl)5(x=0.8)合金的最大放电容量达328.07 mAh.g-1,充放电循环寿命达364次。 相似文献
11.
12.
退火对富铈Mm(NiCoMnAl)5储氢合金电化学性能的影响 总被引:4,自引:0,他引:4
研究了热处理对富铈Mm(NiCoMnAl)5合金晶体结构和电化学性能的影响,实验发现热处理使合金的X射线衍射峰变尖变窄,表明热处理使合金的成分变得均匀,晶格畸变和缺陷减少;但同时,合金的过电势和充放电电势滞后明显增加,特别是在高电流密度150mA·g-1充放电,合金的充放电电极势之间产生了很大的滞后。扫描电镜结果显示,退火合金比铸态合金的晶粒更大更完整;电化学测试结果表明,热处理后合金电化学容量和循环寿命均降低。 相似文献
13.
14.
采用真空烧结方式制备了AB3.5型La0.7-xNdxMg0.3Ni3.4Al0.1(x=0,0.1,0.2,0.3和0.4)储氢合金.XRD分析表明,所有合金均由LaNi5,La2Ni7和LaNi3三相组成.当Nd含量增加时,合金中的LaNi5和La2Ni7相含量有不同程度的增加,而LaNi3相相应减少.电化学性能测试表明,添加适量的Nd能改善合金电极的循环稳定性,其中La0.6Nd0.1Mg0.3Ni3.4Al0.1合金具有相对较好的综合性能,其最大放电容量达到322.4 mAh·g-1,循环50周的容量保持率(S50)达到89.98%. 相似文献
15.
Mg50Ni50非晶合金具有较高的初始放电容量(500mAh/g),有希望成为Ni-MH二次电池的负极合金材料。但较差的循环稳定性限制了它的进一步开发和应用。为此,本研究采用机械合金化方法,基于Mg侧进行元素替代,获得了四元Mg0.9-xTi0.1PdxNi(X=0.04-0.1)储氢合金。XRD和TEM分别从宏观和微观角度证实该系列合金仍为非晶态合金。本研究还发现,随着Pd含量的增加,腐蚀电流降低;合金的抗腐蚀能力提高。当Pd含量达到0.1的时候,Mg0.8Ti0.1Pd0.1Ni合金的耐蚀能力达到最大,其容量保持率也达到最高,经80次循环后放电容量仍然保持在200mAh/g以上。
AB3型La-Mg-Ni储氢合金与Mg基合金类似之处在于:具有较高的初始放电容量但循环容量保持率较低。为此,本研究将AB3型La0.7Mg0.3Ni3.5合金与具有较高循环稳定性的AB2型Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金相复合,获得新型AB3-AB2复相合金。XRD研究表明复合物中La0.7Mg0.3Ni3.5和Ti0.17Zr0.08V0.35Cr0.1Ni0.3仍旧保持原有结构。扫描电镜(SEM)研究发现,复合物颗粒的平均尺寸在50μm左右。由于Ti0.17Zr0.08V0.35Cr0.1Ni0.3相的防护,复合物的耐腐蚀能力及100次循环容量保持率(62.3%)得以显著提高。 相似文献
16.
17.
V2.1TiNi0.4Zrx(x=0~0.06)储氢电极合金的相结构及电化学性能* 总被引:1,自引:0,他引:1
系统研究了V2.1TiNi0.4Zrx(x=0耀0.06)储氢电极合金的相结构及电化学性能. 相结构分析表明, 所有合金均由体心立方(bcc)结构的V 基固溶体主相和第二相组成, 且第二相沿主相晶界形成三维网状分布;其中, 当Zr 含量x 臆0.02时合金的第二相为TiNi基相, 而当Zr含量x达0.04时, 其第二相变为C14型Laves相, 且主相和第二相的晶胞体积均随着x 的增加而增大.电化学性能测试表明, 添加Zr 元素可以改善合金的活化性能和提高最大放电容量; 同时, 随着Zr 含量x 的增大, 合金的高倍率放电性能得到明显提高, 但充放电循环稳定性逐渐降低. 在所研究的合金样品中, V2.1TiNi0.4Zr0.04合金具有相对较好的综合性能. 相似文献
18.
本文研究了储氢合金表面处理,粒度分布,稀土组成和添加剂硼对储氢合金高倍率放电性能的影响及机制的探讨。采用物理方法和化学方法对储氢合金进行表面处理,提高了合金表面电化学反应速度,同时促进了氢原子在合金本体中的扩散,从而改善了合金的活化性能、放电容量和高倍率放电能力。储氢合金粉粒度太粗和太细都使合金电极阻抗增大,导致放电容量和高保率放电能力下降,而且大电流放电平台也较低,选择合适的储氢合金粉粒度分布既可提高合金的活性和放电容量又能改善合金高倍率放电能力。随着合金中La含量的增加和Ce含量的减少,提高了合金的表面活性,使合金的大电流放电性能得到改善。储氢合金中加入元素B,使合金易粉化并形成少量的第二相,不但改善了合金的活性和放电容量而且显著地提高了合金高倍率放电能力。 相似文献
19.
20.
MgNi2添加对AB5型储氢合金电化学性能的影响 总被引:1,自引:0,他引:1
制得了含Mg的AB5型稀土合金, 研究了合金添加Mg后合金电化学性能的变化. 采用ICP, XRD对合金组成和结构进行分析, 并通过EIS、CV、SEM和阳极极化曲线研究了电化学反应机理. 相似文献