共查询到20条相似文献,搜索用时 15 毫秒
1.
Hajime Nakamura Tamotsu Igarashi Takayuki Tsutsui 《International Journal of Heat and Fluid Flow》2003,24(6):807-815
The flow and local heat transfer around a wall-mounted cube oriented 45° to the flow is investigated experimentally in the range of Reynolds number 4.2 × 103–3.3 × 104 based on the cube height. The distribution of local heat transfer on the cube and its base wall are examined, and it is clarified that the heat transfer distribution under the angled condition differs markedly to that for cube oriented perpendicular to the flow, particularly on the top face of the cube. The surface pressure distribution is also investigated, revealing a well-formed pair of leading-edge vortices extending from the front corner of the top face downstream along both front edges for Re>(1−2)×104. Regions of high heat transfer and low pressure are formed along the flow reattachment and separation lines caused by these vortices. In particular, near the front corner of the top face, pressure suction and heat transfer enhancement are pronounced. The average heat transfer on the top face is enhanced at Re>(1−2)×104 over that of a cube aligned perpendicular to the flow. 相似文献
2.
Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest. 相似文献
3.
V.U. Kakade G.D. Lock M. Wilson J.M. Owen J.E. Mayhew 《International Journal of Heat and Fluid Flow》2009,30(5):939-949
Encapsulated thermochromic liquid crystal (TLC) can accurately measure surface temperature in a variety of heat transfer and fluid flow experiments. Narrow-band TLC, where the colour changes over a temperature range of 1 °C, can be used to determine surface temperature within an uncertainty of 0.1 °C. Wide-band TLC, typically active over 5–20 °C, allow the possibility of mapping surface temperature distributions. In part 1 of this two-part paper, an extensive set of calibrations for narrow-band and wide-band TLC is reported. This generic study provides insight into the importance and influence of the various factors governing the colour–temperature relationship. These governing effects include the variation in optical path, the spectrum of the illumination source, the lighting and viewing angles, the differences between cooling or heating cycles (hysteresis), the variation with the number of heating or cooling cycles (aging) and how this varies with TLC film thickness. Two narrow-band crystals are also specifically calibrated for application to experiments on a transparent disc rotating at high speed (5000 rpm). Part 2 of this paper describes how these accurately-calibrated crystals were used to measure the transient surface temperature on, and heat transfer to, a rotating disc. 相似文献
4.
V.U. Kakade G.D. Lock M. Wilson J.M. Owen J.E. Mayhew 《International Journal of Heat and Fluid Flow》2009,30(5):950-959
Encapsulated thermochromic liquid crystal (TLC) can accurately measure surface temperature in a variety of heat transfer and fluid-flow experiments. In Part 1 of this two-part paper, two narrow-band liquid crystals were specifically calibrated for application to experiments on a disc rotating at high speed (5000 rpm). Part 2 describes how these crystals were used to measure the surface temperature on the disc in a transient experiment that models the flow of internal cooling air in a gas turbine. The TLC was viewed through the transparent polycarbonate disc using a digital video camera and strobe light synchronised to the disc frequency. The convective heat transfer coefficient, h, was subsequently calculated from the one-dimensional solution of Fourier’s conduction equation for a semi-infinite wall. The analysis accounted for the exponential rise in the air temperature driving the heat transfer, and for experimental uncertainties in the measured values of h. The paper focuses on the method used, and sample experimental results are provided to demonstrate the accuracy and potency of the technique. 相似文献
5.
In this paper the study of visco-elastic (Walters' liquid B model) flow past a stretching plate with suction is considered. Exact solutions of the boundary layer equations of motion and energy are obtained. The expressions for the coefficient of skin friction and of boundary layer thickness are obtained. 相似文献
6.
Toshihiro Tsuji Tsuyoshi Kajitani Tatsuhiko Nishino 《International Journal of Heat and Fluid Flow》2007,28(6):1472-1483
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters. 相似文献
7.
The hydrodynamic stability of a dilute disperse mixture flow in a quasi-equilibrium region of a boundary layer with a significantly nonuniform particle concentration profile is investigated. The mixture is described by a two-fluid model with an incompressible viscous carrier phase. In addition to the Stokes drag, the Saffman lifting force is taken into account in the interphase momentum exchange. On the basis of a numerical solution of the boundary-value problem for a modified Orr-Sommerfeld equation, neutral stability curves are analyzed and the dependence of the critical Reynolds number on the governing parameters is studied. It is shown that taking into account the particle concentration nonuniformity in the main flow and the Saffman lifting force significantly changes the stability limits of the two-phase laminar boundary layer flow. The effect of these factors on the boundary layer stability is considered for the first time. 相似文献
8.
A. Yu. D’yachenko V. I. Terekhov N. I. Yarygina 《Journal of Applied Mechanics and Technical Physics》2007,48(4):486-491
Convective heat transfer in a transverse cavity with a small aspect ratio, angle of wall inclination ϕ = 30–90°, and heated
bottom, frontal, and rear walls of the cavity is studied experimentally. Temperature distributions are measured in longitudinal
and transverse sections on three walls; temperature fields are measured over the entire heated surface. Local and mean heat-transfer
coefficients are calculated. The highest intensification of heat transfer is found to occur on the rear wall for low values
of ϕ Reconstruction of the one-cell structure to the two-cell structure of the primary vortex in the cavity leads to a drastic
decrease in heat transfer over the cavity span from the end faces toward the center in the case with ϕ = 60 and 70°. A certain
increase in the mean heat-transfer coefficient averaged over the entire heated surface is noted for ϕ = 60°.
__________
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 23–29, July–August, 2007. 相似文献
9.
Vassilios Theofilis 《国际流体数值方法杂志》1993,16(2):153-170
A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full Navier-Stokes equations are solved using an initial value problem approach after two-dimensional perturbations of varying amplitude are introduced into the basic flow. A second-order-accurate finite difference scheme is used in the normal-to-the-wall direction, while a pseudospectral approach is employed in the other directions; temporally, an implicit Crank-Nicolson scheme is used. Extensive use of the efficient fast Fourier transform (FFT) algorithm has been made, resulting in substantial savings in computing cost. Results for the two-dimensional linear regime of perturbations are in very good agreement with past numerical and theoretical investigations, without the need for specific assumptions used by the latter, thus establishing the generality of our method. 相似文献
10.
Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow 总被引:2,自引:0,他引:2
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ = 2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions(VLSMs).The three dimen-sional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer(TBL). 相似文献
11.
In the current work, the boundary layers of an unsteady incompressible stagnation-point flow with mass transfer were further investigated. Similarity transformation technique was used and the similarity equation group was solved using numerical methods. Interesting observation is that there are multiple solutions seen for negative unsteadiness parameters, β. The influences of mass transfer, unsteadiness parameter, and Prandtl numbers on velocity and temperature profiles, wall drag, and wall heat fluxes were investigated and analyzed. The asymptotic behaviors for the similarity equations in limiting situations were theoretically analyzed. It is found that solutions exist for all mass transfer parameters for β≥−1. For a certain mass transfer parameter, there are two solutions when βc<β<0; there is one solution for (β=βc)∪(β≥0); there is no solution for β<βc, where βc is a critical unsteadiness parameter dependent on mass transfer parameter. 相似文献
12.
I. I. Lipatov 《Fluid Dynamics》2006,41(5):725-735
Local flows in a laminar boundary layer flowing over surface heating elements are investigated. Mathematical models of disturbed flows are constructed on the basis of an asymptotic analysis and the similarity parameters are determined. The time-dependent local heating regimes ensuring control of separation and flow stability in the boundary layer are studied. The results of a numerical and analytic analysis are obtained. 相似文献
13.
A visualization study is conducted on the excited laminar-turbulent transition within a flat plate boundary layer flow in a water tunnel. The hydrogen bubble technique is employed to investigate the complex characteristics of the flow structure and its breakdown in the later stages of the transition. A new flow structure is observed, which involves two secondary hairpin vortices outboard of both legs of a primary hairpin vortex. This complex structure is argued to be a precursor of a turbulent spot in this K-type transition. Also reported in the paper is the evolution of the flow structure and its subsequent breakdown, manifested by the emergence of dark spots, low-speed fluid bumps, and near-wall hairpin vortex groups. The results indicate that the near-wall flow breakdown is the result of instability of a local three-dimensional high-shear layer between the low-speed fluid bump and the outer higher-speed region. 相似文献
14.
Analytical solutions for thermal forcing vortices in boundary layer and its applications 总被引:4,自引:0,他引:4
Using the Boussinesq approximation, the vortex in the boundary layer is assumed to be axisymmetrical and thermal-wind balanced system forced by diabatic heating and friction, and is solved as an initial-value problem of linearized vortex equation set in cylindrical coordinates. The impacts of thermal forcing on the flow field structure of vortex are analyzed. It is found that thermal forcing has significant impacts on the flow field structure, and the material representative forms of these impacts are closely related to the radial distribution of heating. The discussion for the analytical solutions for the vortex in the boundary layer can explain some main structures of the vortex over the Tibetan Plateau. 相似文献
15.
A numerical method developed for simulating three-dimensional incompressible boundary layer flow is presented. K-type transition
up to the two-spike stage is simulated, and flow topologies at various stages of transition are determined. Comparison with
flow topologies from other simulations of turbulent and transitioning flows is made.
Financial support provided by Air Operations Division, Aeronautical and Maritime Research Laboratory, Defence Science and
Technology Organisation, Australia. 相似文献
16.
Control of cross flow in the three-dimensional boundary layer using space-periodic body force action
A. P. Kuryachii 《Fluid Dynamics》2009,44(2):233-239
The possibility of attenuation of the cross flow in the three-dimensional incompressible laminar boundary layer on a sideslipping wing under the action of body force sources simulating the time-average forces generated by a surface electric discharge is estimated. The effect of the distance between the sources and the sideslip angle of the wing on the cross flow velocity is investigated for the source intensity observed experimentally. 相似文献
17.
Over a range of 102<Re*<5800, 6.5<Pr*<79, and 0.6<n<1, circumferential wall temperatures for water and aqueous polymer (purely viscous) solution flows over a smooth cylinder were measured experimentally. The cylinder was heated by passing direct electric current through it. Aqueous solutions of Carbopol 934 and EZ1 were used as power-law non-Newtonian fluids. The peripherally averaged heat transfer coefficient for purely viscous non-Newtonian fluids, at any fixed flow rate, decreases with increasing polymer concentration. A new correlation is proposed for predicting the peripherally averaged Nusselt number for power-law fluid flows over a heated cylinder in cross flow. 相似文献
18.
Particle-turbulence interaction in a boundary layer 总被引:15,自引:0,他引:15
Particle-turbulence interaction in wall turbulent flows has been studied. A series of experiments varying particle size, particle density, particle loading and flow Re has been conducted. The results show that the larger polystyrene particles (1100 μm) cause an increase in the number of wall ejections, giving rise to an increase in the measured values of the turbulence intensities and Reynolds stresses. On the other hand, the smaller polystyrene particles (120 μm) bring about a decrease in the number of wall ejections, causing a decrease in the measured intensities and Reynolds stresses. These effects are enhanced as the particle loading is increased. It was also found that the heavier glass particles (88 μm) do not bring about any significant modulation of turbulence. In addition, measurements of the burst frequency and the mean streak-spacing show no significant change with increase in particle loading. Based on these observations, a mechanism of particle transport in wall turbulent flows has been proposed, in which the particles are transported (depending on their size, density and flow Re) by the bursting events of the wall regions. 相似文献
19.
IntroductionThecylindricalparticletwo_phaseflowsareofparticularinterestintheprocessingofcompositematerials ,textileindustry ,papermaking ,chemicalengineering ,foodprocessing[1].Thecylindricalparticlesinaflowcanmakethereinforcementofmaterials,thechangeofphysicalpropertyformaterialsandthereductionofdrag .Arranaga[2 ]reportedthatdragreductioneffectsareupto 60 %inpipeflowsbyaddingcylindricalparticlestoflow .Thecylindricalparticleshavealsoeffectsonthemechanismsofflowstability .Theeffectofcylindric… 相似文献
20.
Heat transfer performance for batch oscillatory flow mixing 总被引:2,自引:0,他引:2
Experimental heat transfer data is presented for two batch operations of oscillatory flow mixing. In one case fluid is oscillated within a baffled tube and in the second case baffles are oscillated within a process fluid. For both situations the heat transfer coefficient depends on the intensity of oscillation, and the energy performance of each configuration corresponds to that of an equivalent net turbulent flow in a pipe or a batch stirred vessel. The results indicate that oscillatory flow batch mixing is as energy efficient as other conventional mixing configurations and the heat transfer performance indicates that each oscillatory flow mixing configuration could be satisfactorily used as a batch reactor system. 相似文献