首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The class \({\mathcal{CR}}\) of completely regular semigroups equipped with the unary operation of inversion forms a variety whose lattice of subvarieties is denoted by \({\mathcal{L(CR)}}\). The variety \({\mathcal B}\) of all bands induces two relations \({\mathbf{B}^{\land}}\) and \({\mathbf{B}^{\lor} }\) by meet and join with \({\mathcal B}\). Their classes are intervals with lower ends \({\mathcal V_{B^{\land}}}\) and \({\mathcal V_{B^{\lor}}}\), and upper ends \({\mathcal V^{B^{\land}}}\) and \({\mathcal V^{B^{\lor}}}\). These objects induce four operators on \({\mathcal{L(CR)}}\).The cluster at a variety \({\mathcal V}\) is the set of all varieties obtained from \({\mathcal V}\) by repeated application of these four operators. We identify the cluster at any variety in \({\mathcal{L(CR)}}\).  相似文献   

2.
Let \({p \in (1,\infty)}\), \({s \in (0,1)}\) and \({\Omega \subset {\mathbb{R}^{N}}}\) a bounded open set with boundary \({\partial\Omega}\) of class C 1,1. In the first part of the article we prove an integration by parts formula for the fractional p-Laplace operator \({(-\Delta)_{p}^{s}}\) defined on \({\Omega \subset {\mathbb{R}^{N}}}\) and acting on functions that do not necessarily vanish at the boundary \({\partial\Omega}\). In the second part of the article we use the above mentioned integration by parts formula to clarify the fractional Neumann and Robin boundary conditions associated with the fractional p-Laplacian on open sets.  相似文献   

3.
In this work we study the following class of problems in \({\mathbb R^{N}, N > 2s}\)
$$\varepsilon^{2s}(-\Delta)^{s}u + V(z)u = f(u), \,\,\,u(z) > 0$$
where \({0 < s < 1}\), \({(-\Delta)^{s}}\) is the fractional Laplacian, \({\varepsilon}\) is a positive parameter, the potential \({V : \mathbb{R}^N \to \mathbb{R}}\) and the nonlinearity \({f : \mathbb R \to \mathbb R}\) satisfy suitable assumptions; in particular it is assumed that \({V}\) achieves its positive minimum on some set \({M.}\) By using variational methods we prove existence and multiplicity of positive solutions when \({\varepsilon \to 0^{+}}\). In particular the multiplicity result is obtained by means of the Ljusternick-Schnirelmann and Morse theory, by exploiting the “topological complexity” of the set \({M}\).
  相似文献   

4.
Let \({{\mathbb{R}}}\) and Y be the set of real numbers and a Banach space respectively, and \({f, g :{\mathbb{R}} \to Y}\). We prove the Ulam-Hyers stability theorems for the Pexider-quadratic functional equation \({f(x + y) + f(x - y) = 2f(x) + 2g(y)}\) and the Drygas functional equation \({f(x + y) + f(x - y) = 2f(x) + f(y) + f(-y)}\) in the restricted domains of form \({\Gamma_d := \Gamma \cap \{(x, y) \in {\mathbb{R}}^2 : |x| + |y| \ge d\}}\), where \({\Gamma}\) is a rotation of \({B \times B \subset {\mathbb{R}}^2}\) and \({B^c}\) is of the first category. As a consequence we obtain asymptotic behaviors of the equations in a set \({\Gamma_d \subset {\mathbb{R}}^2}\) of Lebesgue measure zero.  相似文献   

5.
We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl–Dirac operators on \({\mathbb{R}^3}\). In particular, we are interested in those operators \({\mathcal{D}_B}\) for which the associated magnetic field \({B}\) is given by pulling back a two-form \({\beta}\) from the sphere \({\mathbb{S}^2}\) to \({\mathbb{R}^3}\) using a combination of the Hopf fibration and inverse stereographic projection. If \({\int_{\mathbb{s}^2} \beta \neq 0}\), we show that
$$\sum_{0 \leq t \leq T} {\rm dim Ker} \mathcal{D}{tB}=\frac{T^2}{8\pi^2}\,\Big| \int_{\mathbb{S}^2}\beta\Big|\,\int_{\mathbb{S}^2}|{\beta}| +o(T^2)$$
as \({T\to+\infty}\). The result relies on Erd?s and Solovej’s characterisation of the spectrum of \({\mathcal{D}_{tB}}\) in terms of a family of Dirac operators on \({\mathbb{S}^2}\), together with information about the strong field localisation of the Aharonov–Casher zero modes of the latter.
  相似文献   

6.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

7.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

8.
We prove the stability of the affirmative part of the solution to the complex Busemann–Petty problem. Namely, if K and L are origin-symmetric convex bodies in \({{\mathbb C}^n}\), n = 2 or n = 3, \({\varepsilon >0 }\) and \({{\rm Vol}_{2n-2}(K\cap H) \le {\rm Vol}_{2n-2}(L \cap H) + \varepsilon}\) for any complex hyperplane H in \({{\mathbb C}^n}\) , then \({({\rm Vol}_{2n}(K))^{\frac{n-1}n}\le({\rm Vol}_{2n}(L))^{\frac{n-1}n} + \varepsilon}\) , where Vol2n is the volume in \({{\mathbb C}^n}\) , which is identified with \({{\mathbb R}^{2n}}\) in the natural way.  相似文献   

9.
Given a Banach algebra \({{\mathcal{A}}}\), for a non-zero character \({\varphi}\) on \({{\mathcal{A}}}\), we characterize the existence of \({\varphi}\)-means on a left introverted subspace of \({{\mathcal{A}^{*}}}\) containing \({\varphi}\) in terms of certain derivations from \({{\mathcal{A}}}\) into certain Banach \({{\mathcal{A}}}\)-bimodules. We also adapt and extend a result in (Crann and Neufang, Trans Amer Math Soc 368:495–513, 2016) on locally compact quantum groups to the Banach algebra setting which, in particular, answers a question of Bédos and Tuset, concerning the amenability of locally compact quantum groups.  相似文献   

10.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

11.
The purpose of this work is to classify, for given integers \({m,\, n\geq 1}\), the bordism class of a closed smooth \({m}\)-manifold \({X^m}\) with a free smooth involution \({\tau}\) with respect to the validity of the Borsuk–Ulam property that for every continuous map \({\phi : X^m \to \mathbb{R}^n}\) there exists a point \({x\in X^m}\) such that \({\phi (x)=\phi (\tau (x))}\). We will classify a given free \({\mathbb{Z}_2}\)-bordism class \({\alpha}\) according to the three possible cases that (a) all representatives \({(X^m, \tau)}\) of \({\alpha}\) satisfy the Borsuk–Ulam property; (b) there are representatives \({({X_{1}^{m}}, \tau_1)}\) and \({({X_{2}^{m}}, \tau_2)}\) of \({\alpha}\) such that \({({X_{1}^{m}}, \tau_1)}\) satisfies the Borsuk–Ulam property but \({({X_{2}^{m}}, \tau_2)}\) does not; (c) no representative \({(X^m, \tau)}\) of \({\alpha}\) satisfies the Borsuk–Ulam property.  相似文献   

12.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

13.
We study the one-dimensional periodic derivative nonlinear Schrödinger equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion \({\textstyle \int }h_k\), \(k\in {\mathbb {Z}}_{+}\). In each \({\textstyle \int }h_{2k}\) the term with the highest regularity involves the Sobolev norm \(\dot{H}^{k}({\mathbb {T}})\) of the solution of the DNLS equation. We show that a functional measure on \(L^2({\mathbb {T}})\), absolutely continuous w.r.t. the Gaussian measure with covariance \(({\mathbb {I}}+(-\varDelta )^{k})^{-1}\), is associated to each integral of motion \({\textstyle \int }h_{2k}\), \(k\ge 1\).  相似文献   

14.
For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.  相似文献   

15.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

16.
We consider a finite region of a d-dimensional lattice, \({d \in \mathbb{N}}\), of weakly coupled harmonic oscillators. The coupling is provided by a nearest-neighbour potential (harmonic or not) of size \({\varepsilon}\). Each oscillator weakly interacts by force of order \({\varepsilon}\) with its own stochastic Langevin thermostat of arbitrary positive temperature. We investigate limiting as \({\varepsilon \rightarrow 0}\) behaviour of solutions of the system and of the local energy of oscillators on long-time intervals of order \({\varepsilon^{-1}}\) and in a stationary regime. We show that it is governed by an effective equation which is a dissipative SDE with nondegenerate diffusion. Next, we assume that the interaction potential is of size \({\varepsilon \lambda}\), where \({\lambda}\) is another small parameter, independent from \({\varepsilon}\). Solutions corresponding to this scaling describe small low temperature oscillations. We prove that in a stationary regime, under the limit \({\varepsilon \rightarrow 0}\), the main order in \({\lambda}\) of the averaged Hamiltonian energy flow is proportional to the gradient of temperature. We show that the coefficient of proportionality, which we call the conductivity, admits a representation through stationary space–time correlations of the energy flow. Most of the results and convergences we obtain are uniform with respect to the number of oscillators in the system.  相似文献   

17.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

18.
The nonsingular Hermitian surface of degree \({\sqrt{q} +1}\) is characterized by its number of \({\mathbb{F}_q}\) -points among the surfaces over \({\mathbb{F}_q}\) of degree \({\sqrt{q} +1}\) in the projective 3-space without \({\mathbb{F}_q}\) -plane components.  相似文献   

19.
This paper is devoted to study a class of systems of nonlinear Schrödinger equations: \(\left\{\begin{array}{rcl} -\Delta u+u-u^{3}=\epsilon v, \\ -\Delta v+v-v^{3}=\epsilon u, \end{array}\right.\) in \(\mathbb{R}^{n}\) with dimension n = 1,2,3. Our main result states that if \(\mathcal{P}\) denotes a regular polytope centered at the origin of \(\mathbb{R}^{n}\) such that its side is greater than the radius, then there exists a solution with one multi-bump component having bumps located near the vertices of \(\xi\mathcal{P}\), where \({\xi\sim \log(1/\varepsilon)}\), while the other component has one negative peak.  相似文献   

20.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号