首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider in a group \((G,\cdot )\) the ternary relation
$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$
and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure
$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$
We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps
$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$
of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).
  相似文献   

2.
In this paper, we will study the dependence of eigen-pairs \((\lambda _k(\rho ), \varphi _k(x,\rho ))\) of weighted Dirichlet eigenvalue problem on weights \(\rho \). It will be shown that \(\lambda _k(\rho )\) and \(\varphi _k(x,\rho )\) are completely continuous (CC) in \(\rho \). Precisely, when \(\rho _n\) is weakly convergent to \(\rho \) in some Lebesgue space, \(\lambda _k(\rho _n)\) is convergent to \(\lambda _k(\rho )\). As for the convergence of eigenfunctions, since eigenvalues may have multiple eigenfunctions, it will be shown that the distance from \(\varphi _k(x,\rho _n)\) to the eigen space \(V_k(\rho )\) of \(\lambda _k(\rho )\) is tending to zero. As applications, the CC dependence of solutions of linear inhomogeneous equations and the CC dependence of the heat kernels on coefficients will be given.  相似文献   

3.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

4.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

5.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

6.
We consider the partition lattice \(\Pi (\lambda )\) on any set of transfinite cardinality \(\lambda \) and properties of \(\Pi (\lambda )\) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly \(\lambda \); (II) there are maximal chains in \(\Pi (\lambda )\) of cardinality \(> \lambda \); (III) a regular cardinal \(\lambda \) is strongly inaccessible if and only if every maximal chain in \(\Pi (\lambda )\) has size at least \(\lambda \); if \(\lambda \) is a singular cardinal and \(\mu ^{< \kappa } < \lambda \le \mu ^\kappa \) for some cardinals \(\kappa \) and (possibly finite) \(\mu \), then there is a maximal chain of size \(< \lambda \) in \(\Pi (\lambda )\); (IV) every non-trivial maximal antichain in \(\Pi (\lambda )\) has cardinality between \(\lambda \) and \(2^{\lambda }\), and these bounds are realised. Moreover, there are maximal antichains of cardinality \(\max (\lambda , 2^{\kappa })\) for any \(\kappa \le \lambda \); (V) all cardinals of the form \(\lambda ^\kappa \) with \(0 \le \kappa \le \lambda \) occur as the cardinalities of sets of complements to some partition \(\mathcal {P} \in \Pi (\lambda )\), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.  相似文献   

7.
This paper is divided into two parts: In the main deterministic part, we prove that for an open domain \(D \subset \mathbb {R}^d\) with \(d \ge 2\), for every (measurable) uniformly elliptic tensor field a and for almost every point \(y \in D\), there exists a unique Green’s function centred in y associated to the vectorial operator \(-\nabla \cdot a\nabla \) in D. This result implies the existence of the fundamental solution for elliptic systems when \(d>2\), i.e. the Green function for \(-\nabla \cdot a\nabla \) in \(\mathbb {R}^d\). In the second part, we introduce a shift-invariant ensemble \(\langle \cdot \rangle \) over the set of uniformly elliptic tensor fields, and infer for the fundamental solution G some pointwise bounds for \(\langle |G(\cdot ; x,y)|\rangle \), \(\langle |\nabla _x G(\cdot ; x,y)|\rangle \) and \(\langle |\nabla _x\nabla _y G(\cdot ; x,y)|\rangle \). These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case.  相似文献   

8.
9.
Let \(\mathcal {F}\) be a quadratically constrained, possibly nonconvex, bounded set, and let \(\mathcal {E}_1, \ldots , \mathcal {E}_l\) denote ellipsoids contained in \(\mathcal {F}\) with non-intersecting interiors. We prove that minimizing an arbitrary quadratic \(q(\cdot )\) over \(\mathcal {G}:= \mathcal {F}{\setminus } \cup _{k=1}^\ell {{\mathrm{int}}}(\mathcal {E}_k)\) is no more difficult than minimizing \(q(\cdot )\) over \(\mathcal {F}\) in the following sense: if a given semidefinite-programming (SDP) relaxation for \(\min \{ q(x) : x \in \mathcal {F}\}\) is tight, then the addition of l linear constraints derived from \(\mathcal {E}_1, \ldots , \mathcal {E}_l\) yields a tight SDP relaxation for \(\min \{ q(x) : x \in \mathcal {G}\}\). We also prove that the convex hull of \(\{ (x,xx^T) : x \in \mathcal {G}\}\) equals the intersection of the convex hull of \(\{ (x,xx^T) : x \in \mathcal {F}\}\) with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.  相似文献   

10.
If \(\rho \) denotes a finite-dimensional complex representation of \(\mathbf {SL}_{2}(\mathbf {Z})\), then it is known that the module \(M(\rho )\) of vector-valued modular forms for \(\rho \) is free and of finite rank over the ring M of scalar modular forms of level one. This paper initiates a general study of the structure of \(M(\rho )\). Among our results are absolute upper and lower bounds, depending only on the dimension of \(\rho \), on the weights of generators for \(M(\rho )\), as well as upper bounds on the multiplicities of weights of generators of \(M(\rho )\). We provide evidence, both computational and theoretical, that a stronger three-term multiplicity bound might hold. An important step in establishing the multiplicity bounds is to show that there exists a free basis for \(M(\rho )\) in which the matrix of the modular derivative operator does not contain any copies of the Eisenstein series \(E_6\) of weight six.  相似文献   

11.
Let \(\overline{p}(n)\) denote the number of overpartitions of n. Recently, congruences modulo powers of 2 for \(\overline{p}(n)\) were widely studied. In this paper, we prove several new infinite families of congruences modulo powers of 2 for \(\overline{p}(n)\). For example, for \(\alpha \ge 1\) and \(n\ge 0\),
$$\begin{aligned} \overline{p}(8\cdot 3^{4\alpha +4}n+5\cdot 3^{4\alpha +3})\equiv 0 \quad (\mathrm{mod}\,\,{2^8}). \end{aligned}$$
  相似文献   

12.
Simultaneous Diophantine approximation is concerned with the approximation of a point \(\mathbf x\in \mathbb R^d\) by points \(\mathbf r\in \mathbb Q^d\), with a view towards jointly minimizing the quantities \(\Vert \mathbf x - \mathbf r\Vert \) and \(H(\mathbf r)\). Here \(H(\mathbf r)\) is the so-called “standard height” of the rational point \(\mathbf r\). In this paper the authors ask: What changes if we replace the standard height function by a different one? As it turns out, this change leads to dramatic differences from the classical theory and requires the development of new methods. We discuss three examples of nonstandard height functions, computing their exponents of irrationality as well as giving more precise results. A list of open questions is also given.  相似文献   

13.
In this paper, we study a special class of Finsler metrics, \((\alpha ,\beta )\)-metrics, defined by \(F=\alpha \phi (\beta /\alpha )\), where \(\alpha \) is a Riemannian metric and \(\beta \) is a 1-form. We find an equation that characterizes Ricci-flat \((\alpha ,\beta )\)-metrics under the condition that the length of \(\beta \) with respect to \(\alpha \) is constant.  相似文献   

14.
15.
We show that for a locally \(\sigma \)-finite measure \(\mu \) defined on a \(\delta \)-ring, the associate space theory can be developed as in the \(\sigma \)-finite case, and corresponding properties are obtained. Given a saturated \(\sigma \)-order continuous \(\mu \)-Banach function space E, we prove that its dual space can be identified with the associate space \(E ^\times \) if, and only if, \(E^\times \) has the Fatou property. Applying the theory to the spaces \(L^p (\nu )\) and \(L_w^p (\nu )\), where \(\nu \) is a vector measure defined on a \(\delta \)-ring \(\mathcal {R}\) and \(1 \le p < \infty \), we establish results corresponding to those of the case when the vector measure is defined on a \(\sigma \)-algebra.  相似文献   

16.
We consider a discrete-time, continuous-state random walk with steps uniformly distributed in a disk of radius h. For a simply connected domain D in the plane, let \(\omega _h(0,\cdot ;D)\) be the discrete harmonic measure at \(0\in D\) associated with this random walk, and \(\omega (0,\cdot ;D)\) be the (continuous) harmonic measure at 0. For domains D with analytic boundary, we prove there is a bounded continuous function \(\sigma _D(z)\) on \(\partial D\) such that for functions g which are in \(C^{2+\alpha }(\partial D)\) for some \(\alpha >0\) we have
$$\begin{aligned} \lim _{h\downarrow 0} \frac{\int _{\partial D} g(\xi ) \omega _h(0,|\mathrm{d}\xi |;D) -\int _{\partial D} g(\xi )\omega (0,|\mathrm{d}\xi |;D)}{h} = \int _{\partial D}g(z) \sigma _D(z) |\mathrm{d}z|. \end{aligned}$$
We give an explicit formula for \(\sigma _D\) in terms of the conformal map from D to the unit disk. The proof relies on some fine approximations of the potential kernel and Green’s function of the random walk by their continuous counterparts, which may be of independent interest.
  相似文献   

17.
Let \(\Delta = \sum _{m=0}^\infty q^{(2m+1)^2} \in \mathbf {F}_2[[q]]\) be the reduction mod 2 of the \(\Delta \) series. A modular form of level 1, \(f=\sum _{n\geqslant 0} c(n) \,q^n\), with integer coefficients, is congruent modulo \(2\) to a polynomial in \(\Delta \). Let us set \(W_f(x)=\sum _{n\leqslant x,\ c(n)\text { odd }} 1\), the number of odd Fourier coefficients of \(f\) of index \(\leqslant x\). The order of magnitude of \(W_f(x)\) (for \(x\rightarrow \infty \)) has been determined by Serre in the seventies. Here, we give an asymptotic equivalent for \(W_f(x)\). Let \(p(n)\) be the partition function and \(A_0(x)\) (resp. \(A_1(x)\)) be the number of \(n\leqslant x\) such that \(p(n)\) is even (resp. odd). In the preceding papers, the second-named author has shown that \(A_0(x)\geqslant 0.28 \sqrt{x\;\log \log x}\) for \(x\geqslant 3\) and \(A_1(x)>\frac{4.57 \sqrt{x}}{\log x}\) for \(x\geqslant 7\). Here, it is proved that \(A_0(x)\geqslant 0.069 \sqrt{x}\;\log \log x\) holds for \(x>1\) and that \(A_1(x) \geqslant \frac{0.037 \sqrt{x}}{(\log x)^{7/8}}\) holds for \(x\geqslant 2\). The main tools used to prove these results are the determination of the order of nilpotence of a modular form of level-\(1\) modulo \(2\), and of the structure of the space of those modular forms as a module over the Hecke algebra, which have been given in a recent work of Serre and the second-named author.  相似文献   

18.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

19.
In the exciton-polariton system, a linear dispersive photon field is coupled to a nonlinear exciton field. Short-time analysis of the lossless system shows that, when the photon field is excited, the time required for that field to exhibit nonlinear effects is longer than the time required for the nonlinear Schrödinger equation, in which the photon field itself is nonlinear. When the initial condition is scaled by \(\epsilon ^\alpha \), it is found that the relative error committed by omitting the nonlinear term in the exciton-polariton system remains within \(\epsilon \) for all times up to \(t=C\epsilon ^\beta \), where \(\beta =(1-\alpha (p-1))/(p+2)\). This is in contrast to \(\beta =1-\alpha (p-1)\) for the nonlinear Schrödinger equation. The result is proved for solutions in \(H^s(\mathbb {R}^n)\) for \(s>n/2\). Numerical computations indicate that the results are sharp and also hold in \(L^2(\mathbb {R}^n)\).  相似文献   

20.
Let f be a \(C^{1+\alpha }\) diffeomorphism of a compact Riemannian manifold and \(\mu \) an ergodic hyperbolic measure with positive entropy. We prove that for every continuous potential \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that the topological pressure \(P(f|\Omega _n,\phi )\) converges to the free energy \(P_{\mu }(\phi ) = h(\mu ) + \int \phi {d\mu }\). We also prove that for a suitable class of potentials \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that \(P(f|\Omega _n,\phi ) \rightarrow P(\phi )\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号