首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let g:= glm|n be a general linear Lie superalgebra over an algebraically closed field k:= \({\bar F_p}\) of characteristic p > 2. A module of g is said to be of Kac–Weisfeiler type if its dimension coincides with the dimensional lower bound in the super Kac–Weisfeiler property presented by Wang–Zhao in [9]. In this paper, we verify the existence of the Kac–Weisfeiler modules for glm|n. We also establish the corresponding consequence for the special linear Lie superalgebra slm|n with the restrictions that p > 2 and p ? (m - n).  相似文献   

2.
In this paper, an explicit determinant formula is given for the Verma modules over the Lie algebra W(2, 2). We construct a natural realization of certain vaccum module for the algebra W(2, 2) via theWeyl vertex algebra. We also describe several results including the irreducibility, characters and the descending filtrations of submodules for the Verma module over the algebra W(2, 2).  相似文献   

3.
Let n be a positive integer, and \(\mathfrak {A}(n)=\mathbb {F}[x]/(x^{p^{n}})\), the divided power algebra over an algebraically closed field \(\mathbb {F}\) of prime characteristic p >?2. Let π(n) be the tensor product of \(\mathfrak {A}(n)\) and the Grassmann superalgebra \(\bigwedge (1)\) in one variable. The Zassenhaus superalgebra \(\mathcal {Z}(n)\) is defined to be the Lie superalgebra of the special super derivations of the superalgebra π(n). In this paper we study simple modules over the Zassenhaus superalgebra \(\mathcal {Z}(n)\) with p-characters of height 0. We give a complete classification of the isomorphism classes of such simple modules and determine their dimensions. A sufficient and necessary condition for the irreducibility of Kac modules is obtained.  相似文献   

4.
Necessary and sufficient isomorphism conditions for the second cohomology group of an algebraic group with an irreducible root system over an algebraically closed field of characteristic p ≥ 3h ? 3, where h stands for the Coxeter number, and the corresponding second cohomology group of its Lie algebra with coefficients in simple modules are obtained, and also some nontrivial examples of isomorphisms of the second cohomology groups of simple modules are found. In particular, it follows from the results obtained here that, among the simple algebraic groups SL2(k), SL3(k), SL4(k), Sp4(k), and G 2, nontrivial isomorphisms of this kind exist for SL4(k) and G 2 only. For SL4(k), there are two simple modules with nontrivial second cohomology and, for G 2, there is one module of this kind. All nontrivial examples of second cohomology obtained here are one-dimensional.  相似文献   

5.
Let Wpr be the Sobolev class consisting of 2π-periodic functions f such that ‖f(r)p ≤ 1. We consider the relative widths dn(Wpr, MWpr, Lp), which characterize the best approximation of the class Wpr in the space Lp by linear subspaces for which (in contrast to Kolmogorov widths) it is additionally required that the approximating functions g should lie in MWpr, i.e., ‖g(r)pM. We establish estimates for the relative widths in the cases of p = 1 and p = ∞; it follows from these estimates that for almost optimal (with error at most Cn?r, where C is an absolute constant) approximations of the class Wpr by linear 2n-dimensional spaces, the norms of the rth derivatives of some approximating functions are not less than cln min(n, r) for large n and r.  相似文献   

6.
The Lambert W-function is the solution to the transcendental equation W(x)e W(x) = x. It has two real branches, one of which, for x ∈ [?1/e, ∞], is usually denoted as the principal branch. On this branch, the function grows from ? 1 to infinity, logarithmically at large x. The present work is devoted to the construction of accurate approximations for the principal branch of the W-function. In particular, a simple, global analytic approximation is derived that covers the whole branch with a maximum relative error smaller than 5 × 10?3. Starting from it, machine precision accuracy is reached everywhere with only three steps of a quadratically convergent iterative scheme, here examined for the first time, which is more efficient than standard Newton’s iteration at large x. Analytic bounds for W are also constructed, for x > e, which are much tighter than those currently available. It is noted that the exponential of the upper bounding function yields an upper bound for the prime counting function π(n) that is better than the well-known Chebyshev’s estimates at large n. Finally, the construction of accurate approximations to W based on Chebyshev spectral theory is discussed; the difficulties involved are highlighted, and methods to overcome them are presented.  相似文献   

7.
We consider a sequence of convex integral functionals Fs: W1,ps) → ? and a sequence of weakly lower semicontinuous and generally nonintegral functionals Gs: W1,ps) → ?, where {Ωs} is a sequence of domains in ?n contained in a bounded domain Ω ? ?n (n ≥ 2) and p > 1. Along with this, we consider a sequence of closed convex sets Vs = {vW1,ps): vKs(v) a.e. in Ωs}, where Ks is a mapping from the space W1,ps) to the set of all functions defined on Ωs. We establish conditions under which minimizers and minimum values of the functionals Fs + Gs on the sets Vs converge to a minimizer and the minimum value of a functional on the set V = {vW1,p(Ω): vK(v) a.e. in Ω}, where K is a mapping from the space W1,p(Ω) to the set of all functions defined on Ω. These conditions include, in particular, the strong connectedness of the spaces W1,ps) with the space W1,p(Ω), the condition of exhaustion of the domain Ω by the domains Ωs, the Γ-convergence of the sequence {Fs} to a functional F: W1,p(Ω) → ?, and a certain convergence of the sequence {Gs} to a functional G: W1,p(Ω) → ?. We also assume some conditions characterizing both the internal properties of the mappings Ks and their relation to the mapping K. In particular, these conditions admit the study of variational problems with irregular varying unilateral obstacles and with varying constraints combining the pointwise dependence and the functional dependence of the integral form.  相似文献   

8.
A Coxeter system (W, S) is said to be of type K n if the associated Coxeter graph ΓS is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by ΓS. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type K n then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W).  相似文献   

9.
We say that an R-module M is virtually semisimple if each submodule of M is isomorphic to a direct summand of M. A nonzero indecomposable virtually semisimple module is then called a virtually simple module. We carry out a study of virtually semisimple modules and modules which are direct sums of virtually simple modules . Our study provides several natural generalizations of the Wedderburn-Artin Theorem and an analogous to the classical Krull-Schmidt Theorem. Some applications of these theorems are indicated. For instance, it is shown that the following statements are equivalent for a ring R: (i) Every finitely generated left (right) R-module is virtually semisimple; (ii) Every finitely generated left (right) R-module is a direct sum of virtually simple R-modules; (iii) \(R\cong {\prod }_{i = 1}^{k} M_{n_{i}}(D_{i})\) where k,n 1,…,n k ? and each D i is a principal ideal V-domain; and (iv) Every nonzero finitely generated left R-module can be written uniquely (up to isomorphism and order of the factors) in the form R m 1 ⊕… ⊕ R m k where each R m i is either a simple R-module or a virtually simple direct summand of R.  相似文献   

10.
In the present paper, a 2mth-order quasilinear divergence equation is considered under the condition that its coefficients satisfy the Carathéodory condition and the standard conditions of growth and coercivity in the Sobolev space Wm,p(Ω), Ω ? Rn, p > 1. It is proved that an arbitrary generalized (in the sense of distributions) solution uW0m,p (Ω) of this equation is bounded if m ≥ 2, n = mp, and the right-hand side of this equation belongs to the Orlicz–Zygmund space L(log L)n?1(Ω).  相似文献   

11.
Let G be a 2-edge-connected simple graph on n vertices. For an edge e = uvE(G), define d(e) = d(u) + d(v). Let F denote the set of all simple 2-edge-connected graphs on n ≥ 4 vertices such that GF if and only if d(e) + d(e’) ≥ 2n for every pair of independent edges e, e’ of G. We prove in this paper that for each GF, G is not Z 3-connected if and only if G is one of K 2,n?2, K 3,n?3, K 2,n?2 + , K 3,n?3 + or one of the 16 specified graphs, which generalizes the results of X. Zhang et al. [Discrete Math., 2010, 310: 3390–3397] and G. Fan and X. Zhou [Discrete Math., 2008, 308: 6233–6240].  相似文献   

12.
13.
Let νp(n) be the exponent of p in the prime decomposition of n. We show that for different primes p, q satisfying some mild constraints the integers νp(n!) and νq(n!) cannot both be of a rather special form.  相似文献   

14.
We investigate the indecomposable decomposition of the modular standard modules of two families of association schemes of finite order. First, we show that, for each prime number p, the standard module over a field F of characteristic p of a residually thin scheme S of p-power order is an indecomposable FS-module. Second, we describe the indecomposable decomposition of the standard module over a field of positive characteristic of a wreath product of finitely many association schemes of rank 2.  相似文献   

15.
We study metabelian Alperin groups, i.e., metabelian groups in which every 2-generated subgroup has a cyclic commutator subgroup. It is known that, if the minimum number d(G) of generators of a finite Alperin p-group G is n ≥ 3, then d(G′) ≤ C n 2 for p≠ 3 and d(G′) ≤ C n 2 + C n 3 for p = 3. The first section of the paper deals with finite Alperin p-groups G with p≠ 3 and d(G) = n ≥ 3 that have a homocyclic commutator subgroup of rank C n 2 . In addition, a corollary is deduced for infinite Alperin p-groups. In the second section, we prove that, if G is a finite Alperin 3-group with homocyclic commutator subgroup G- of rank C n 2 + C n 3 , then G″ is an elementary abelian group.  相似文献   

16.
For any module V over the two-dimensional non-abelian Lie algebra b and scalar α ∈ C, we define a class of weight modules F α (V) with zero central charge over the affine Lie algebra A 1 (1) . These weight modules have infinitedimensional weight spaces if and only if V is infinite dimensional. In this paper, we will determine necessary and sufficient conditions for these modules F α(V) to be irreducible. In this way, we obtain a lot of irreducible weight A 1 (1) -modules with infinite-dimensional weight spaces.  相似文献   

17.
Given a suitable ordering of the positive root system associated with a semisimple Lie algebra,there exists a natural correspondence between Verma modules and related polynomial algebras. With this, the Lie algebra action on a Verma module can be interpreted as a differential operator action on polynomials, and thus on the corresponding truncated formal power series. We prove that the space of truncated formal power series gives a differential-operator representation of the Weyl group W. We also introduce a system of partial differential equations to investigate singular vectors in the Verma module. It is shown that the solution space of the system in the space of truncated formal power series is the span of {w(1) | w ∈ W }. Those w(1) that are polynomials correspond to singular vectors in the Verma module. This elementary approach by partial differential equations also gives a new proof of the well-known BGG-Verma theorem.  相似文献   

18.
A k-factor of a graph G is a k-regular spanning subgraph of G. A k-factorization is a partition of E(G) into k-factors. Let K(np) be the complete multipartite graph with p parts, each of size n. If \(V_{1},\ldots , V_{p}\) are the p parts of V(K(np)), then a holey k -factor of deficiency \(V_{i}\) of K(np) is a k-factor of \(K(n,p)-V_{i}\) for some i satisfying \(1\le i \le p\). Hence a holey k -factorization is a set of holey k-factors whose edges partition E(K(np)). Representing each (holey) k-factor as a color class in an edge-coloring, a (holey) k-factorization of K(np) is said to be fair if between each pair of parts the color classes have size within one of each other (so the edges are shared “evenly” among the permitted (holey) factors). In this paper the existence of fair 1-factorizations of K(np) is completely settled, as is the existence of fair holey 1-factorizations of K(np). The latter result can be used to provide a new construction for symmetric quasigroups of order np with holes of size n. Such quasigroups have the additional property that the permitted symbols are shared as evenly as possible among the cells in each \(n \times n\) “box”. These quasigroups are in some sense as far from frames produced by direct products as possible.  相似文献   

19.
Let f(pn) be the number of pairwise nonisomorphic p-groups of order \(p^n\), and let g(pn) be the number of groups of order \(p^n\) whose automorphism group is a p-group. We prove that the limit, as p grows to infinity, of the ratio g(pn) / f(pn) equals 1/3 for \(n=6,7\).  相似文献   

20.
Let W be the Weyl group of type F 4: We explicitly describe a finite set of basic braid I *-transformations and show that any two reduced I *-expressions for a given involution in W can be transformed into each other through a series of basic braid I *-transformations. Our main result extends the earlier work on the Weyl groups of classical types (i.e., A n , B n , and D n ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号