首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a broad class of linear Perron–Frobenius operators \({\Lambda:X \rightarrow X}\), where \({X}\) is a real Banach space of \({C^m}\) functions. We prove the existence of a strictly positive \({C^m}\) eigenvector \({v}\) with eigenvalue \({r=r(\Lambda) =}\) the spectral radius of \({\Lambda}\). We prove (see Theorem 6.5 in Sect. 6 of this paper) that \({r(\Lambda)}\) is an algebraically simple eigenvalue and that, if \({\sigma(\Lambda)}\) denotes the spectrum of the complexification of \({\Lambda,\sigma(\Lambda) \backslash \{r(\Lambda)\}\subseteq \{\zeta \in \mathbb{C} \big| |\zeta| \le r_*\}}\), where \({r_* < r(\Lambda)}\). Furthermore, if \({u \in X}\) is any strictly positive function, \({(\frac 1r \Lambda)^k(u) \rightarrow s_u v}\) as \({k \rightarrow \infty}\), where \({s_u > 0}\) and convergence is in the norm topology on \({X}\). In applications to the computation of Hausdorff dimension, one is given a parametrized family \({\Lambda_s,s > s_*}\), of such operators and one wants to determine the (unique) value \({s_0}\) such that \({r(\Lambda_{s_0})=1}\). In another paper (Falk and Nussbaum in C\({^{\rm m}}\) Eigenfunctions of Perron–Frobenius operators and a new approach to numerical computation of Hausdorff dimension, submitted) we prove that explicit estimates on the partial derivatives of the positive eigenvector \({v_s}\) of \({\Lambda_s}\) can be obtained and that this information can be used to give rigorous, sharp upper and lower bounds for \({s_0}\).  相似文献   

2.
Call a set \({A \subseteq \mathbb {R}}\)paradoxical if there are disjoint \({A_0, A_1 \subseteq A}\) such that both \({A_0}\) and \({A_1}\) are equidecomposable with \({A}\) via countabbly many translations. \({X \subseteq \mathbb {R}}\) is hereditarily nonparadoxical if no uncountable subset of \({X}\) is paradoxical. Penconek raised the question if every hereditarily nonparadoxical set \({X \subseteq \mathbb {R}}\) is the union of countably many sets, each omitting nontrivial solutions of \({x - y = z - t}\). Nowik showed that the answer is ‘yes’, as long as \({|X| \leq \aleph_\omega}\). Here we show that consistently there exists a counterexample of cardinality \({\aleph_{\omega+1}}\) and it is also consistent that the continuum is arbitrarily large and Penconek’s statement holds for any \({X}\).  相似文献   

3.
We prove that there exists an absolute constant \({\alpha > 1}\) with the following property: if K is a convex body in \({{\mathbb R}^n}\) whose center of mass is at the origin, then a random subset \({X\subset K}\) of cardinality \({{\rm card}(X)=\lceil\alphan\rceil }\) satisfies with probability greater than \({1-e^{-c_1n}}\)
$$K\subseteq c_2n\, {\rm conv}(X),$$
where \({c_1, c_2 > 0}\) are absolute constants. As an application we show that the vertex index of any convex body K in \({{\mathbb R}^n}\) is bounded by \({c_3n^2}\), where \({c_3 > 0}\) is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
  相似文献   

4.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

5.
We show that on every Ramanujan graph \({G}\), the simple random walk exhibits cutoff: when \({G}\) has \({n}\) vertices and degree \({d}\), the total-variation distance of the walk from the uniform distribution at time \({t=\frac{d}{d-2} \log_{d-1} n + s\sqrt{\log n}}\) is asymptotically \({{\mathbb{P}}(Z > c \, s)}\) where \({Z}\) is a standard normal variable and \({c=c(d)}\) is an explicit constant. Furthermore, for all \({1 \leq p \leq \infty}\), \({d}\)-regular Ramanujan graphs minimize the asymptotic \({L^p}\)-mixing time for SRW among all \({d}\)-regular graphs. Our proof also shows that, for every vertex \({x}\) in \({G}\) as above, its distance from \({n-o(n)}\) of the vertices is asymptotically \({\log_{d-1} n}\).  相似文献   

6.
We describe a class of discontinuous additive functions \({a:X\to X}\) on a real topological vector space X such that \({a^n={\rm id}_X}\) and \({a({\mathcal{H}}){\setminus} {\mathcal{H}}\neq\emptyset}\) for every infinite set \({{\mathcal{H}}\subset X}\) of vectors linearly independent over \({\mathbb{Q}}\). We prove the density of the family of all such functions in the linear topological space \({{\mathcal{A}}_X}\) of all additive functions \({a:X\to X}\) with the topology induced on \({{\mathcal{A}}_X}\) by the Tychonoff topology of the space XX. Moreover, we consider additive functions \({a\in{\mathcal{A}}_X}\) satisfying \({a^n={\rm id}_X}\) and \({a({\mathcal{H}})= {\mathcal{H}}}\) for some Hamel basis \({{\mathcal{H}}}\) of X. We show that the class of all such functions is also dense in \({{\mathcal{A}}_X}\). The method is based on decomposition theorems for linear endomorphisms.  相似文献   

7.
We consider a family \({\{T_{r}: [0, 1] \circlearrowleft \}_{r\in[0, 1]}}\) of Markov interval maps interpolating between the tent map \({T_{0}}\) and the Farey map \({T_{1}}\). Letting \({\mathcal{P}_{r}}\) denote the Perron–Frobenius operator of \({T_{r}}\), we show, for \({\beta \in [0, 1]}\) and \({\alpha \in (0, 1)}\), that the asymptotic behaviour of the iterates of \({\mathcal{P}_{r}}\) applied to observables with a singularity at \({\beta}\) of order \({\alpha}\) is dependent on the structure of the \({\omega}\)-limit set of \({\beta}\) with respect to \({T_{r}}\). The results presented here are some of the first to deal with convergence to equilibrium of observables with singularities.  相似文献   

8.
We establish an extension of Cantor’s intersection theorem for a \({K}\)-metric space (\({X, d}\)), where \({d}\) is a generalized metric taking values in a solid cone \({K}\) in a Banach space \({E}\). This generalizes a recent result of Alnafei, Radenovi? and Shahzad (2011) obtained for a \({K}\)-metric space over a solid strongly minihedral cone. Next we show that our Cantor’s theorem yields a special case of a generalization of Banach’s contraction principle given very recently by Cvetkovi? and Rako?evi? (2014): we assume that a mapping \({T}\) satisfies the condition “\({d(Tx, Ty) \preceq \Lambda (d(x, y))}\)” for \({x, y \in X}\), where \({\preceq}\) is a partial order induced by \({K}\), and \({\Lambda : E \rightarrow E}\) is a linear positive operator with the spectral radius less than one. We also obtain new characterizations of convergence in the sense of Huang and Zhang in a \({K}\)-metric space.  相似文献   

9.
Let \({\Omega}\) a bounded domain in \({\mathbb{R} ^N }\), and let \({u\in C^1 (\overline{\Omega})}\) a weak solution of the following overdetermined BVP: \({-\nabla (g(|\nabla u|)|\nabla u|^{-1}\nabla u)=f(|x|,u)}\), \({ u > 0 }\) in \({\Omega }\) and \({u=0, \ |\nabla u(x)|=\lambda (|x|)}\) on \({\partial \Omega }\), where \({g\in C([0,+\infty)\cap C^1 ((0,+\infty ) ) }\) with \({g(0)=0}\), \({g'(t) > 0}\) for \({t > 0}\), \({f\in C([0,+\infty ) \times [0, +\infty ) )}\), f is nonincreasing in \({|x|}\), \({\lambda \in C([0, +\infty )) }\) and \({\lambda }\) is positive and nondecreasing. We show that \({\Omega }\) is a ball and u satisfies some “local” kind of symmetry. The proof is based on the method of continuous Steiner symmetrization.  相似文献   

10.
We show that for every \({k\ge 2}\) and \({n\ge k}\), there is an \({n}\)-dimensional unit cube in \({\mathbb{R}^n}\) which is mapped to a regular \({2k}\)-gon by an orthogonal projection in \({\mathbb{R}^n}\) onto a \({2}\)-dimensional subspace. Moreover, by increasing dimension \({n}\), arbitrary large regular \({2k}\)-gon can be obtained in such a way. On the other hand, for every \({m\ge 3}\) and \({n\ge m-1}\), there is an \({n}\)-dimensional regular simplex of unit edge in \({\mathbb{R}^n}\) which is mapped to a regular \({m}\)-gon by an orthogonal projection onto a plane. Moreover, contrary to the cube case, arbitrary small regular \({m}\)-gon can be obtained in such a way, by increasing dimension \({n}\).  相似文献   

11.
We show that if \({f\colon X\to Y}\) is a quasisymmetric mapping between Ahlfors regular spaces, then \({dim_H f(E)\leq dim_H E}\) for “almost every” bounded Ahlfors regular set \({E\subseteq X}\). If additionally, \({X}\) and \({Y}\) are Loewner spaces then \({dim_H f(E)=dim_H E}\) for “almost every" Ahlfors regular set \({E\subset X}\). The precise statements of these results are given in terms of Fuglede’s modulus of measures. As a corollary of these general theorems we show that if \({f}\) is a quasiconformal map of \({\mathbb{R}^N}\), \({N\geq 2}\), then for Lebesgue a.e. \({y\in\mathbb{R}^N}\) we have \({dim_H f(y+E) = dim_H E}\). A similar result holds for Carnot groups as well. For planar quasiconformal maps, our general estimates imply that if \({E \subset {\mathbb{R}}}\) is Ahlfors \({d}\)-regular, \({d < 1}\), then some component of \({f(E \times {\mathbb{R}})}\) has dimension at most \({2/(d+1)}\), and we construct examples to show this bound is sharp. In addition, we show there is a \({1}\)-dimensional set \({S\subseteq \mathbb R}\) and planar quasiconformal map \({f}\) such that \({f({\mathbb{R}} \times S)}\) contains no rectifiable sub-arcs. These results generalize work of Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and answer questions posed in Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and Capogna et al. (Mapping theory in metric spaces. http://aimpl.org/mappingmetric, 2016).  相似文献   

12.
What is the maximum of the sum of the pairwise (non-obtuse) angles formed by n lines in the Euclidean 3-space? This question was posed by Fejes Tóth in (Acta Math Acad Sci Hung 10:13–19, 1959). Fejes Tóth solved the problem for \({n \leq 6}\), and proved the asymptotic upper bound \({n^{2} \pi /5}\) as \({n \to \infty}\). He conjectured that the maximum is asymptotically equal to \({n^{2} \pi /6}\) as \({n \to \infty}\). The main result of this paper is an upper bound on the sum of the angles of n lines in the Euclidean 3-space that is asymptotically equal to \({3n^{2} \pi /16}\) as \({n \to \infty}\).  相似文献   

13.
Let \({T}\) be a homomorphism from a Banach algebra \({B}\) to a Banach algebra \({A}\). The Cartesian product space \({A\times B}\) with \({T}\)-Lau multiplication and \({\ell^1}\)-norm becomes a new Banach algebra \({A\times _T B}\). We investigate the notions such as approximate amenability, pseudo amenability, \({\phi}\)-pseudo amenability, \({\phi}\)-biflatness and \({\phi}\)-biprojectivity for Banach algebra \({A\times_T B}\). We also present an example to show that approximate amenability of \({A}\) and \({B}\) is not stable for \({A\times _TB}\). Finally we characterize the double centralizer algebra of \({A\times _T B}\) and present an application of this characterization.  相似文献   

14.
It is well known that if \({0.a_1a_2a_3\ldots}\) is the base-\({b}\) expansion of a number normal to base-\({b}\), then the numbers \({0.a_ka_{m+k}a_{2m+k}\ldots}\) for \({m\ge 2}\), \({k\ge 1}\) are all normal to base-\({b}\) as well. In contrast, given a continued fraction expansion \({\langle a_1,a_2,a_3,\ldots\rangle}\) that is normal (now with respect to the continued fraction expansion), we show that for any integers \({m\ge 2}\), \({k\ge 1}\), the continued fraction \({\langle a_k, a_{m+k},a_{2m+k},a_{3m+k},\ldots\rangle}\) will never be normal.  相似文献   

15.
Yi Gu 《manuscripta mathematica》2016,150(1-2):247-253
Let \({S}\) be a Dedekind scheme with perfect residue fields at closed points. Let \({f: X\rightarrow S}\) be a minimal regular arithmetic surface of fibre genus at least 2 and let \({f': X'\rightarrow S}\) be the canonical model of \({f}\). It is well known that \({\omega_{X'/S}}\) is relatively ample. In this paper we prove that \({\omega_{X'/S}^{\otimes n}}\) is relatively very ample for all \({n\geq 3}\).  相似文献   

16.
Let F be a global function field of characteristic \({p > 0}\), \({K/F}\) an \({\ell}\)-adic Lie extension (\({ \ell \neq p}\)), and \({A/F}\) an abelian variety. We provide Euler characteristic formulas for the Gal\({(K/F)}\)-module \({Sel_A(K)_\ell}\).  相似文献   

17.
In this study, we first calculate the polar moment of inertia of orbit curves under one-parameter planar motion in the generalized complex plane \({{\mathbb{C}_p}}\) and then give the Holditch-type theorem for \({{\mathbb{C}_p}}\): When the fixed points \({X}\) and \({Y}\) on the moving plane \({{\mathbb{K}_p} \subset {\mathbb{C}_p}}\) trace the same curve \({k}\) with the polar moment of inertia \({{T_X}}\), the different point \({Z}\) on this line segment \({XY}\) traces another curve \({{k_Z}}\) with the polar moment of inertia \({{T_Z}}\) during the one-parameter planar motion in the fixed plane \({{\mathbb{K}'_p} \subset {\mathbb{C}_p}}\). Thus, we obtain that the difference between the polar moments of inertia of these curves \({( {{T_Z} - {T_X}} )}\) depends on the only the \({p}\)-distances of this points and \({p}\)-rotation angle of the motion, \({{T_X} - {T_Z} = {\delta _p}ab.}\)  相似文献   

18.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

19.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

20.
Consider the polynomial \({f(x, y) = xy^k + C}\) for \({k \geq 2}\) and any nonzero integer constant C. We derive an asymptotic formula for the k-free values of \({f(x, y)}\) when \({x, y \leq H}\). We also prove a similar result for the k-free values of \({f(p, q)}\) when \({p, q \leq H}\) are primes, thus extending Erd?s’ conjecture for our specific polynomial. The strongest tool we use is a recent generalization of the determinant method due to Reuss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号