首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loops are prevalent topological structures in cross-linked polymer networks, resulting from the folding of polymer chains back onto themselves. Traditionally, they have been considered as defects that compromise the mechanical properties of the network, leading to extensive efforts in synthesis to prevent their formation. In this study, we introduce the inclusion of cyclic dibenzo-24-crown-8 (DB24C8) moieties within the polymer network strands to form CCNs, and surprisingly, these loops enhance the mechanical performances of the network, leading to tough elastomers. The toughening effect can be attributed to the unique cyclic structure of DB24C8. The relatively small size and the presence of rigid phenyl rings provide the loops with relatively stable conformations, allowing for substantial energy dissipation upon the application of force. Furthermore, the DB24C8 rings possess a broad range of potential conformations, imparting the materials with exceptional elasticity. The synergistic combination of these two features effectively toughens the materials, resulting in a remarkable 66-fold increase in toughness compared to the control sample of covalent networks. Moreover, the mechanical properties, particularly the recovery performance of the network, can be effectively tuned by introducing guests to bind with DB24C8, such as potassium ions and secondary ammonium salts.  相似文献   

2.
Abstract

The excellent high-temperature mechanical properties and other desirable characteristics of polybenzimidazole (PBI) polymer systems make these systems attractive candidates for development as ablative heat-shield materials. This paper describes the formulation of several new low-density polybenzimidazole composites. The proposed structure of the basic linear PBI prepolymer and of several highly cross-linked PBI polymers are presented. The cross-linked PBI's were obtained either thermally (by postcuring to a high temperature) or chemically (by the use of either preoxidized polyfunctional amines or triphenyl trimeasate as a comonomer in the polymerization).  相似文献   

3.
Enantioselective ester hydrolysis catalyzed by imprinted polymers   总被引:4,自引:0,他引:4  
Highly cross-linked network polymers prepared by molecular imprinting catalyzed enantioselectively the hydrolysis of N-tert-butoxycarbonyl phenylalanine-p-nitrophenyl ester (BOCPheONP). The templates were designed to allow incorporation of the key catalytic elements, found in the proteolytic enzyme chymotrypsin, into the polymer active sites. Three model systems were evaluated. These were constructed from a chiral phosphonate analogue of phenylalanine (series A, C) or L-phenylalanine (series B) attached by a labile ester linkage to an imidazole-containing vinyl monomer. Free radical copolymerization of the template with methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) gave a highly cross-linked network polymer. The templates could be liberated from the polymers by hydrolysis, giving catalytically active sites envisaged to contain an enantioselective binding site, a site complementary to a transition state like structure (series A, C), and a hydroxyl, imidazole, and carboxylic acid group at hydrogen bond distance. As predicted, the enantiomer of BOCPheONP complementary to the configuration of the template was preferentially hydrolyzed with D-selectivity for the series A polymers (kD/kL = 1.9) and L-selectivity for the series B polymers (kL/kD = 1.2). The maximum rate enhancement, when compared with a control polymer, prepared using a benzoyl-substituted imidazole monomer as template, was 2.5, and comparing with the imidazole monomer in solution, a maximum rate enhancement of 10 was observed. The catalytic activity was higher for polymers subjected to the nucleophilic treatment. This was explained by a higher site density and flexibility of the polymer matrix caused by this treatment. In a comparison of template rebinding to polymers imprinted with a template containing either a carboxylate (planar ground state structure) or a phosphonate (tetrahedral transition state like structure) functionality, it was observed that imprinted polymers are able to discriminate between a transition state like and a ground state structure for transesterification. However the influence of transition state stabilization on the observed rate enhancements remains obscure. Only at acidic pH's was catalysis observed, whereas at basic pH's the polymers inhibit the reaction. At a later stage, the catalytic activity of the polymers for nonactivated D- and L-phenylalanine ethyl esters was investigated. A rate enhancement of up to 3 was observed when compared to the blank. Most important, however, the polymers imprinted with a D template preferentially hydrolyzed the D-ethyl ester and exhibited saturation kinetics.  相似文献   

4.
The polymerization of zinc methacrylates coordinated with a bidentate ligand ( 1 – 4 ) was carried out in chloroform at 60°C. The polymerization of these monomers gave chloroform‐insoluble polymers. Stereoregularity of the polymers was estimated from 1H NMR spectra of poly(methyl methacrylate)s (PMMAs) derived from the original polymers. Monomers 1 and 2 gave slightly different polymers compared with conventional ones obtained by polymerization of methacrylic acid, while 3 afforded higher amounts of isotactic polymers than 1 and 2 . Conversely, 4 gave a polymer of high syndiotacticity. Furthermore, the relationship between triad tacticity and monomer concentration in the feed was studied. Consequently, it was demonstrated that the structure of bidentate ligands coordinated with zinc ion influences the stereoregularity of the resulting polymers.  相似文献   

5.
Thermoresponsive hydrogels are of great importance as smart materials. They are usually composed of cross-linked polymers with a lower critical solution temperature (LCST). Although much is known about networks of poly(N-isopropylacrylamide), all other polymers are somewhat neglected. In this work, the temperature-dependent swelling behavior of differently cross-linked thermoresponsive poly(2-ethyl-2-oxazoline) (PEtOx) hydrogels were investigated with regard to varying parameters of the network composition. It was found that the degrees of swelling of the hydrogels converge for a certain polymer/solvent system at a distinct temperature independent of its degree of cross-linking. Furthermore, this temperature correlates with the LCST of the respective starting PEtOx. Its net chain molecular weight Mc only affects the maximum degree of swelling and thus, the swelling–deswelling rate of the hydrogel. The fundamental structure/property relations found in this study could be useful to predict the behavior of other thermoresponsive hydrogels.  相似文献   

6.
We investigate the valence electronic charge density of the C(60) (-) monomers in (C(60) (-))(n) polymer chains in K- and RbC(60) by means of a nonorthogonal tight-binding formalism using experimental data on the positions of the carbon atoms. Various configurations of the C(60) cages are considered. Starting from the ideal icosahedral C(60) structure and moving to the realistic, experimentally determined spatial configuration of the C(60) cages in K- and RbC(60), we observe a systematic increase of the electric quadrupole moments on the C(60) (-) monomers. We also confirm the validity of factorizing the charge density of a C(60) (-) monomer into an angular and a radial part.  相似文献   

7.
Using density functional theory and generalized gradient approximation for exchange and correlation, we present theoretical analysis of the electronic structure of recently synthesized graphyne and its boron nitride analog (labeled as BN-yne). The former is composed of hexagonal carbon rings joined by C-chains, while the latter is composed of hexagonal BN rings joined by C-chains. We have explored the nature of bonding and energy band structure of these unique systems characterized by sp and sp(2) bonding. Both graphyne and BN-yne are found to be direct bandgap semiconductors. The bandgap can be modulated by changing the size of hexagonal ring and the length of carbon chain, providing more flexibilities of energy band engineering for device applications. The present study sheds theoretical insight on better understanding of the properties of the novel carbon-based 2D structures beyond the graphene sheet.  相似文献   

8.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

9.
Poly(aryl ether)s containing diphenylacetylene moieties in the backbone have been synthesized. When the polymers are heated an exothermic reaction, resulting from reaction of the acetylene units, occurs in the range 380- 434°C and the polymers undergo a cross-linking reaction. Polymers cross-linked at 340°C exhibit Tg increases from 2°C to complete disappearance of the Tg depending on the concentration of the diphenylacetylene group which has been incorporated into the polymer. In most cases films of the cross-linked polymers are still flexible and exhibit Young's moduli in the range 1.2-2.1 GPa at 200°C. The solubility or the amount of swelling of these cross-linked polymers in solvents depends on the mol % of diphenylacetylene groups incorporated in the polymer backbone. Copolymers have also been synthesized.  相似文献   

10.
The structural stability and electronic properties of the recently characterized three-dimensional (3D) cuboid-shaped C(60) polymer are studied using periodic ab initio density functional methods. It is shown that the experimentally observed structure is metastable and not fully relaxed from the high pressure state. A second polymorph, which is more stable than the experimental structure, is identified from the calculations. This new structure differs from the observed structure in the number of fourfold-coordinated atoms per C(60) molecule. Both structures are found to be metallic with bulk moduli only about one-third that of diamond. The cuboidal C(60) is not the long sought after superhard 3D carbon polymer; however, the two polymorphs studied here reveal unusual electronic band structures that might suggest interesting electronic properties.  相似文献   

11.
Information on orbital hybridization is very important to understand the structural, physical, and chemical properties of a material. Results of a comparative first-principles study on the behaviours of orbital hybridization in the two-dimensional single-element phases by carbon, silicon, and germanium are presented. From the well-known three-dimensional hexagonal lonsdaleite structure, in which the atoms are in ideal sp(3)-bonding, the layer spacing along c-axis is gradually stretched to simulate the evolutions of structural and electronic properties from three-dimensional to two-dimensional lattice configurations in the three materials. A turning point of the total system energy due to the sp(3) to sp(2) transition is observed during this process in carbon. In contrast, no such phenomenon is found in silicon and germanium. The differences in electronic structure and bonding behaviour are further examined through comparative investigation of atomic angular-momentum projected density of states and electronic energy band spectrums of these materials. We demonstrate that the valence electronic orbital in the two-dimensional hexagonal crystals of Si and Ge shows sp(3)-like behaviour for the partial hybridization of s and p(z), which leads to their different lattice configurations to graphene. The role of π-bonds in stabilizing the flat configuration of graphene is also discussed.  相似文献   

12.
Two polymers, containing 6H-indolo [2,3-b] quinoxaline as a repeating unit, have been prepared by polycyclization of 5,5′-biisatyl with 3,3′-diaminobenzidine, and of 5,5′-diisatyl ether with 3,3′,3,4′-tetraaminodiphenyl ether in polyphosphoric acid. Their structure was established by comparing the infrared and electronic spectra of the newly obtained polymers with the corresponding spectra of four model compounds synthesized for the purpose. The electronic spectra showed conjugation along the chain of both the polymer with ether bonds and the one with single bonds between the rings. The two polymers gave an electronic paramagnetic resonance signal. The polyindoloquinoxalines showed good thermal stability in air and in nitrogen, the better stability being manifested by the polymer with single bonds between the rings.  相似文献   

13.
UV-cured networks prepared from mixtures of di-functional (polyethylene-glycol di-acrylate) and mono-functional (2-ethylhexyl acrylate) acrylates were analysed after hydrolysis, by aqueous size-exclusion chromatography coupled to on-line reversed-phase liquid-chromatography. The mean network density and the fraction of dangling chain ends of these networks were varied by changing the concentration of mono-functional acrylate. The amount and the molar-mass distribution of the polyethylene-glycol chains between cross-links (M(XL)) and polyacrylic acid (PAA) backbone chains (the so-called kinetic chain length (kcl)) in the different acrylate networks were determined quantitatively. The molar-mass distribution of kcl revealed an almost linear dependence on the concentration of mono-functional acrylate. Analysis of the starting materials showed a significant concentration of mono-functional polyethylene-glycol acrylate. In combination with the analysis of the extractables of the UV-cured networks (polymers not attached to the network, impurities that originate from the photo-initiator and unreacted monomers), more insight in the total network structure was obtained. It was shown that the UV-cured networks contain only small fractions of residual compounds. With these results, the chemical network structure for the different UV-cured acrylate polymers was expressed in network parameters such as the number of PAA units which are cross-linked, the degree of cross-linking, and the network density, which is the molar concentration of effective network chains between cross-links per volume of the polymers. The mean molar mass of chains between chemical network junctions (M(C)) was calculated and compared with results obtained from solid-state NMR and DMA. The mean molar mass of chains between network junctions as determined by these methods was similar.  相似文献   

14.

Specific features of synthesis of network polymers based on tetrazolylethyl cellulose ethers by alkylation of tetrazole rings in the structure of the cellulose derivative with di- and polyfunctional oligomeric and polymeric oxiranecontaining compounds were studied. The influence exerted by the structure of the cross-linking agents on the time parameters of the network structure formation, degree of the polymer cross-linking, ability of the network polymers obtained to absorb various liquids, and pH and temperature sensitivity of the hydrogels based on cross-linked tetrazolylated cellulose was considered.

  相似文献   

15.
A significantly enhanced, ultrafast third-order optical nonlinearity at the wavelengths of 1150-1600 nm was demonstrated with cross-linked C60-containing polyurethane films using the Z-scan technique. Good-quality polymer films with a high loading of C60 derivative were obtained by cross-linking of the hydroxyl-containing C60 derivative and a triisocyanate. The positive Kerr coefficient with nonresonant nonlinear refractive index n2 falls in the range of (3.7 +/- 0.80) x 10-4 to (2.0 +/- 0.6) x 10-3 cm2/GW, and the calculated chi(3) and gamma values are up to 9.7 x 10-11 and 9.6 x 10-32 esu at 1550 nm, which are several orders of enhancement in third-order optical nonlinearity over pristine C60 in solution and 1-2 orders of enhancement over recently reported C60 derivatives and conjugated polymers.  相似文献   

16.
This article only deals with the topic of intense interest to us and to a considerable extent of our own experimental results on the synthesis,characterization and application of C60-con-taining functional polymers such as poly(N-vinylcarbazole),polystyrene and polyacrylonitrile-based fullerene polymers.The results demonstrate that [60] fullerene can be directly incorporated into a variety of functional polymers by copolymer-ization or grafting,but also can be used to modify or improve the electronic,optical and physicochemical properties of polymers.Both the stereo-electroniceffect and the steric hindrance of C60 have an important influence on the structure and physicochemical properties of the parent polymer.  相似文献   

17.
The charge density (CD) of coordination polymer Co3(C8H4O4)4(C4H12N)2(C5H11NO)3 (1) has been determined from multipole modeling of structure factors obtained from single-crystal synchrotron X-ray diffraction measurements at 16 K. The crystal structure formally contains a negatively charged framework with cations and neutral molecules in the voids. However, the CD suggests that the framework is close to neutral, and therefore qualitative conclusions based on formal charge counting, e.g., about guest inclusion properties, will be incorrect. There are considerable differences in the charge distributions of the three unique benzenedicarboxylic acid linkers, which are widely used in coordination polymers. This suggests that the electrostatic properties of coordination polymer cavities, and thereby their inclusion properties, are highly tunable. The electron density topology shows that the tetrahedrally coordinated Co atom has an atomic volume which is 15% larger than that of the octahedrally coordinated Co atom. The crystal structure has both ferromagnetic and antiferromagnetic interactions, but no direct metal-metal bonding is evidenced in the CD. The magnetic ordering therefore takes place through superexchange in the oxygen bridges and the aromatic linkers. Bonding analysis of the experimental CD reveals that two oxygen atoms, O(1) and O(11), have significant covalent contributions to the metal-ligand bonding, whereas all other oxygen atoms have closed-shell interactions with the metals. This indicates that these two oxygen atoms are the key mediators of the magnetic ordering.  相似文献   

18.
We have investigated the influence of polymer structure on the erosion profiles of multilayered polyelectrolyte assemblies fabricated from sodium poly(styrene sulfonate) (SPS) and three different hydrolytically degradable polyamines. We synthesized three structurally related poly(beta-amino ester)s (polymers 1-3) having systematic variations in both charge density and hydrophobicity. These changes in structure did not influence film thickness significantly, but polymer structure was found to play an important role in defining the rates at which multilayered assemblies fabricated from these materials eroded in physiologically relevant media. Films 60 nm thick fabricated from polymer 1 and SPS eroded completely in 50 h when incubated in PBS buffer at 37 degrees C, as determined by ellipsometry. Analogous films fabricated from polymers 2 and 3 eroded and released SPS into solution over significantly longer time periods ranging from approximately 150 h (ca. 6 days) to 370 h (ca. 15 days), respectively. These differences are consistent with a systematic increase in the hydrophobicity of polymers 1-3 as well as the relative rates at which these polymers degrade hydrolytically. This work demonstrates that it is possible to tailor the rates at which thin, multilayered polyelectrolyte assemblies release incorporated anionic polyelectrolytes over a large range of time periods simply by changing the structure of the degradable polyamine used to fabricate a film. The principles reported here may therefore contribute to the design of multilayered assemblies that permit a broad range of spatial and temporal control over the release of therapeutic agents from coated surfaces.  相似文献   

19.
The synthesis of two 1D coordination polymers [Zn2L12]n 1 and [Zn2L22]n 2 , based on the H2L1 (bis (salicylidene)‐3‐oxapentane‐1,5‐diamine) and the H2L2 (bis (5‐methylsalicylaldehyde)‐3‐oxapentane‐1,5‐diamine) ligands, have been described and characterized by IR, elemental analysis and X‐ray single crystal analyses. In coordination polymer 1 , each Zn2+ ion is five‐coordinated by three oxygen atoms and two nitrogen atoms from deprotonated ligand forming a square pyramidal configuration. It is worth noting that phenolic oxygens of the deprotonated H2L1 adapt monodentate and monoatomic bridging coordinated modes resulting in one‐dimensional linear chain structure in which macro rings alternately connect small rings. The coordination polymer 2 is a four‐coordinated one‐dimensional zigzag chain in which geometric structure around the Zn (II) atom can be described as distorted tetrahedron. The antioxidant activity of the coordination polymers 1 – 2 and the ligands were determined by superoxide and hydroxyl radical scavenging method in vitro. The results demonstrated that the coordination polymers exhibit more effective antioxidant activity than the ligands. Moreover, compared with emissive bands of the free ligands in the solid state and DMF solvent, the photoluminescent transition of the Zn (II) coordination polymer 1 – 2 may be attributed to ligand‐to‐ligand charge‐transfer regulated by Zn (II) ion.  相似文献   

20.
High-molecular-weight polymers containing [2H]-1,2,4-triazoline-3-thione rings are prepared by the condensations of diisothiocyanates with bis(acid hydrazides) to give intermediate polymeric acylthiosemicarbazides that are ring-closed by refluxing in 1M aqueous sodium carbonate. Thermal cyclization of the polymeric acylthiosemicarbazides leads to cross-linked insoluble products. The acylation of bis(thiosemicarbazides) with bis(acid chlorides) produces polymers of a similar structure but lower molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号