首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Creating cavities in varying levels, from molecular containers to macroscopic materials of porosity, have long been motivated for biomimetic or practical applications. Herein, we report an assembly approach to multiresponsive supramolecular gels by integrating photochromic metal–organic cages as predefined building units into the supramolecular gel skeleton, providing a new approach to create cavities in gels. Formation of discrete O‐Pd2L4 cages is driven by coordination between Pd2+ and a photochromic dithienylethene bispyridine ligand (O‐PyFDTE). In the presence of suitable solvents (DMSO or MeCN/DMSO), the O‐Pd2L4 cage molecules aggregate to form nanoparticles, which are further interconnected through supramolecular interactions to form a three‐dimensional (3D) gel matrix to trap a large amount of solvent molecules. Light‐induced phase and structural transformations readily occur owing to the reversible photochromic open‐ring/closed‐ring isomeric conversion of the cage units upon UV/visible light radiation. Furthermore, such Pd2L4 cage‐based gels show multiple reversible gel–solution transitions when thermal‐, photo‐, or mechanical stimuli are applied. Such supramolecular gels consisting of porous molecules may be developed as a new type of porous materials with different features from porous solids.  相似文献   

2.
Recently, porous organic cage crystals have become a real alternative to extended framework materials with high specific surface areas in the desolvated state. Although major progress in this area has been made, the resulting porous compounds are restricted to the microporous regime, owing to the relatively small molecular sizes of the cages, or the collapse of larger structures upon desolvation. Herein, we present the synthesis of a shape‐persistent cage compound by the reversible formation of 24 boronic ester units of 12 triptycene tetraol molecules and 8 triboronic acid molecules. The cage compound bears a cavity of a minimum inner diameter of 2.6 nm and a maximum inner diameter of 3.1 nm, as determined by single‐crystal X‐ray analysis. The porous molecular crystals could be activated for gas sorption by removing enclathrated solvent molecules, resulting in a mesoporous material with a very high specific surface area of 3758 m2 g?1 and a pore diameter of 2.3 nm, as measured by nitrogen gas sorption.  相似文献   

3.
Porous liquids are a type of porous materials that engineer permanent porosity into unique flowing liquids, exhibiting promising functionalities for a variety of applications. Here a Type I porous liquid is synthesized by transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy. Simple physical mixing of 18‐crown‐6 with task‐specific anionic porous organic cages affords a porous ionic liquid with anionic porous organic cages as the anionic parts and 18‐crown‐6/potassium ion complexes as the cationic parts. In contrast, mixing of 15‐crown‐5 and anionic porous organic cages in a 2:1 ratio gives only solids, while the addition of excess 15‐crown‐5 affords a Type II porous liquid. The permanent porosity in the cage‐based porous liquids has been also confirmed by molecular simulation, positron (e+) annihilation lifetime spectroscopy, and enhanced gas sorption capacity compared with pure crown ethers.  相似文献   

4.
Porous materials with well‐defined pore structures have received considerable attention in the past decades due to their unique structures and wide applications. Most porous materials such as zeolites, metal‐organic frameworks, covalent organic frameworks, and porous organic polymers are extended to infinite frameworks or networks by robust covalent or coordination bonds. Porous molecular cages composed of discrete molecules with permanent cavities are an emerging class of porous material and the discrete molecules assemble into solids by weak intermolecular interaction. In comparison to porous extended solids such as metal‐organic frameworks and covalent organic frameworks, porous molecular cage solids are generally soluble in organic solvents thus allowing solution processing, making them more convenient to apply in many fields. This review mainly focuses on the recent advances of application of porous molecular cages (porous organic cages and metal‐organic cages) for enantioselective recognition and separation from 2010 to present, including gas chromatography, capillary electrochromatography, chiral fluorescent recognition, chiral potentiometric sensing, and enantioselective adsorption. Furthermore, the two important family members of porous molecular cages, porous organic cages and metal‐organic cages, are also discussed.  相似文献   

5.
By synthesizing derivatives of a trans‐1,2‐diaminocyclohexane precursor, three new functionalized porous organic cages were prepared with different chemical functionalities on the cage periphery. The introduction of twelve methyl groups ( CC16 ) resulted in frustration of the cage packing mode, which more than doubled the surface area compared to the parent cage, CC3 . The analogous installation of twelve hydroxyl groups provided an imine cage ( CC17 ) that combines permanent porosity with the potential for post‐synthetic modification of the cage exterior. Finally, the incorporation of bulky dihydroethanoanthracene groups was found to direct self‐assembly towards the formation of a larger [8+12] cage, rather than the expected [4+6], cage molecule ( CC18 ). However, CC18 was found to be non‐porous, most likely due to cage collapse upon desolvation.  相似文献   

6.
Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal–organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.  相似文献   

7.
We present here a simple method for the bottom-up fabrication of microporous organic particles with surface areas in the range 500-1000 m(2) g(-1). The method involves chiral recognition between prefabricated, intrinsically porous organic cage molecules that precipitate spontaneously upon mixing in solution. Fine control over particle size from 50 nm to 1 μm can be achieved by varying the mixing temperature or the rate of mixing. No surfactants or templates are required, and the resulting organic dispersions are stable for months. In this method, the covalent synthesis of the cage modules can be separated from their solution processing into particles because the modules can be dissolved in common solvents. This allows a "mix and match" approach to porous organic particles. The marked solubility change that occurs upon mixing cages with opposite chirality is rationalized by density functional theory calculations that suggest favorable intermolecular interactions for heterochiral cage pairings. The important contribution of molecular disorder to porosity and surface area is highlighted. In one case, a purposefully amorphized sample has more than twice the surface area of its crystalline analogue.  相似文献   

8.
The formation of two‐dimensional (2D) oriented porous organic cage crystals (consisting of imine‐based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution‐processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution‐processable molecular crystalline 2D membranes for molecular separations.  相似文献   

9.
Covalent organic cages have potential applications in molecular inclusion/recognition and porous organic crystals. Bridging arene units with sp3 atoms enables facile construction of rigid isolated internal vacancies, and various prismatic arene cages have been synthesized by kinetically controlled covalent bond formation. However, the synthesis of a tetrahedral one, which requires twice as much bond formation as prismatic ones, has been limited to a thermodynamically controlled dynamic SNAr reaction, and this reversible covalent bond formation made the resulting cage product chemically unstable. Here we report the Rh-catalyzed high-yielding and highly 1,3,5-selective room temperature [2+2+2] cycloaddition of push-pull alkynes and its application to the synthesis of chemically stable aryl ether cages of various shapes and sizes, including prismatic and tetrahedral forms. These aryl ether cages are highly crystalline and intertwine with each other to form regular packing structures. Some aryl ether cages encapsulated isolated water molecules in their hydrophobic cavity by hydrogen bonding with the multiple ester moieties.  相似文献   

10.
A novel low-symmetry organic molecular cage with distinctive geometry was successfully synthesized from 5,5′-(propane-2,2-diyl)bis(2-hydroxyisophthalaldehyde) and 1,2-cyclohexanediamine building blocks, through the desymmetrized vertex design strategy. Single-crystal X-ray crystallographic analysis shows that the cage contains asymmetrical and nonplanar windows, exhibiting an unprecedented C2 symmetry and an efficient packing. The molecular cage structure was also characterized by FTIR, NMR, and MALDI-TOF. Quantum chemistry studies show that the cage structure contains rare intramolecular hydrogen-hydrogen (C−H⋅⋅⋅H−C) bonding interactions. The cage crystals exhibit high iodine vapor uptake (3.78 g g−1), which is among the highest for porous molecular materials. The knowledge gained in this study would open new possibilities for the design and synthesis of molecular cages with novel topologies targeting a broad range of applications.  相似文献   

11.
How molecules pack has vital ramifications for their applications as functional molecular materials. Small changes in a molecule''s functionality can lead to large, non-intuitive, changes in their global solid-state packing, resulting in difficulty in targeted design. Predicting the crystal structure of organic molecules from only their molecular structure is a well-known problem plaguing crystal engineering. Although relevant to the properties of many organic molecules, the packing behaviour of modular porous materials, such as porous organic cages (POCs), greatly impacts the properties of the material. We present a novel way of predicting the solid-state phase behaviour of POCs by using a simplistic model containing the dominant degrees of freedom driving crystalline phase formation. We employ coarse-grained simulations to systematically study how chemical functionality of pseudo-octahedral cages can be used to manipulate the solid-state phase formation of POCs. Our results support those of experimentally reported structures, showing that for cages which pack via their windows forming a porous network, only one phase is formed, whereas when cages pack via their windows and arenes, the phase behaviour is more complex. While presenting a lower computational cost route for predicting molecular crystal packing, coarse-grained models also allow for the development of design rules which we start to formulate through our results.

This work presents a novel method for predicting molecular crystal structure formation using coarse-grained modelling, enabling the development of design rules.  相似文献   

12.
A highly electron‐deficient C3‐symmetric tris(bipyridyl) ligand was prepared in four steps and used for the coordination of Fe(OTf)2, thereby resulting in the homochiral assembly of a new family of robust tetrahedral M4L4 cages. This homochiral T‐symmetric cage containing a relatively large cavity of 330 Å3 is capable of encapsulating an anionic guest, as was determined by mass spectrometry, 19F NMR spectroscopy, and finally shown from its crystal structure. Moreover, crystallization of the cage from CH3CN led to crystals containing both (ΔΔΔΔ and ΛΛΛΛ) enantiomers, while crystallization from CH3OH resulted in crystals containing only the right‐handed (ΔΔΔΔ) cage. The difference in the crystal packing of the two crystal structures is discussed and a feasible explanation for the unique phenomenon among supramolecular cages—spontaneous resolution—is given.  相似文献   

13.
Herein, the trackable supramolecular transformation of a two‐component molecular cage to a three‐component cage through supramolecular fusion with another two‐component molecular square is described. The use of tetraphenylethene (TPE), a chromophore with aggregation‐induced emission (AIE) character, as a component for the molecular cages enables facile fluorescence monitoring of the transformation process: while both cages exhibit fluorescence emission via the restriction of intramolecular motion of the TPE motif, the interactions between TPE and 4,4′‐bipyridine introduced in the supramolecular fusion process result in partial fluorescence quenching and shifts in the emission maximum. This study provides a simple and efficient approach towards complex supramolecular cages with emergent functions and demonstrates that AIE features could provide unique opportunities for the characterization of complex, dynamic supramolecular transformation processes.  相似文献   

14.
Herein, the trackable supramolecular transformation of a two-component molecular cage to a three-component cage through supramolecular fusion with another two-component molecular square is described. The use of tetraphenylethene (TPE), a chromophore with aggregation-induced emission (AIE) character, as a component for the molecular cages enables facile fluorescence monitoring of the transformation process: while both cages exhibit fluorescence emission via the restriction of intramolecular motion of the TPE motif, the interactions between TPE and 4,4′-bipyridine introduced in the supramolecular fusion process result in partial fluorescence quenching and shifts in the emission maximum. This study provides a simple and efficient approach towards complex supramolecular cages with emergent functions and demonstrates that AIE features could provide unique opportunities for the characterization of complex, dynamic supramolecular transformation processes.  相似文献   

15.
The porphyrin boxes ( PB‐1 and PB‐2 ), which are rationally designed porous organic cages with a large cavity using well‐defined and rigid 3‐connected triangular and 4‐connected square shaped building units are reported. PB‐1 has a cavity as large as 1.95 nm in diameter and shows high chemical stability in a broad pH range (4.8 to 13) in aqueous media. The crystalline nature as well as cavity structure of the shape‐persistent organic cage crystals were intact even after complete removal of guest molecules, leading to one of the highest surface areas (1370 m2g?1) among the known porous organic molecular solids. The size of the cavities and windows of the porous organic cages can be modulated using different sized building units while maintaining the topology of the cages, as illustrated with PB‐2 . Interestingly, PB‐2 crystals showed unusual N2 sorption isotherms as well as high selectivity for CO2 over N2 and CH4 (201 and 47.9, respectively at 273 K at 1 bar).  相似文献   

16.
Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe‐selective to CH4‐selective, which is understood using 129Xe, 1H, and pulsed‐field gradient NMR spectroscopy.  相似文献   

17.
Dynamic covalent chemistry (DCC) opens up a fascinating route for the construction of well-organized supramolecular architectures, starting from organic molecular cages to crystalline macromolecular covalent organic frameworks (COFs). Herein, for the first time, we have manifested a facile room-temperature DCC-directed transformation of discrete organic imine cage-to-COF film at the liquid–liquid interface. The unfolding of the cage leading to the generation of imine intermediates, followed by their interface-assisted preorganization and subsequent growth of the COF film, are elucidated through detailed spectroscopic and microscopic investigations. The interfacial cage-to-COF transformation provides a facile route for the faster fabrication of free-standing COF films with high porosity and crystallinity, demonstrating excellent performance towards molecular sieving and high solvent permeance. Thus, the current study opens up a new route for structural interconversion between two crystalline entities with diverse dimensionality employing DCC at the confined interface.  相似文献   

18.
Designing organic components that can be used to construct porous materials enables the preparation of tailored functionalized materials. Research into porous materials has seen a resurgence in the past decade as a result of finding of self‐standing porous molecular crystals (PMCs). Particularly, a number of crystalline systems with permanent porosity that are formed by self‐assembly through hydrogen bonding (H‐bonding) have been developed. Such systems are called hydrogen‐bonded organic frameworks (HOFs). Herein we systematically describe H‐bonding patterns (supramolecular synthons) and molecular structures (tectons) that have been used to achieve thermal and chemical durability, a large surface area, and functions, such as selective gas sorption and separation, which can provide design principles for constructing HOFs with permanent porosity.  相似文献   

19.
A crystalline porous organic cage molecule, CC3, is shown to adsorb up to 20.1 wt% water reversibly. This was confirmed by both gravimetric sorption and by crystallographic analysis. Crystals of CC3 are stable in boiling water for at least 4 h. The surprising chemical and supramolecular stability of these imine-based molecular crystals suggests scope for practical applications in humid environments.  相似文献   

20.
Porous organic cages composed of discrete cage molecules have attracted considerable recent attention as gas adsorption materials and separation media. In this study, we report a homochiral porous organic cage CC5 with a large cavity and pore windows as a novel stationary phase for high‐resolution gas chromatographic separations. The capillary column was prepared by a static coating method. A large number of racemic compounds have been resolved on the coated capillary column, including derivatized amino acids, alcohols, alcohol amines, esters, ethers, ketones, and epoxides. It is interesting that the CC5‐coated capillary column exhibits significant chiral recognition complementarity to a commercial β‐DEX 120 column and a previously reported homochiral porous organic cage CC3‐R‐coated column, which could expand the range of the analytes amenable to separation on porous organic cage‐based capillary columns. Moreover, the fabricated column also shows excellent selectivity for the separation of positional isomers, including the challenging ethylbenzene and xylene isomers. Experimental results demonstrate an excellent separation performance and stability of the CC5‐coated column, making it promising for gas chromatography applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号