首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A simple, unique and selective HPLC‐PDA method was developed and validated for the simultaneous estimation of aliskiren (ALS) and amlodipine (AML) in human plasma. Extraction of the sample was accomplished by protein precipitation. Plasma proteins were precipitated by employing acetonitrile containing hydrochlorothiazide as internal standard. The compounds were analyzed by HPLC by using PDA detector on a Hibar C18 (250 × 4.6 mm) column with a mobile phase comprising acetonitrile and phosphate buffer (pH 4.2 and 25 mm ; 60:40 v/v) with a flow rate of 0.8 mL/min. Different sample pretreatment techniques were evaluated but protein precipitation was found to be satisfactory, offering good recovery values of 97.11–98.45% for ALS and 97.5–99.12% for AML. The within‐day precisions for ALS were 96.66, 99.16 and 99.41% at 90, 240 and 480 ng/mL, respectively, and for AML they were 97.27, 99.54 and 99.31% at 3.3, 8.8 and 17.6 ng/mL, respectively. The between‐day precisions for ALS were 96.66, 99.16 and 99.41% at 90, 240 and 480 ng/mL, respectively and the between‐day precisions for AML were 98.18, 99.20 and 99.40% at 3.3, 8.8 and 17.6 ng/mL, respectively. The limit of quantitation was 30 and 1.0 ng/mL for ALS and AML respectively. Different constituents of plasma proteins did not interfere with the absolute recovery of ALS and AML. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, specific and sensitive HPLC method has been developed for the determination of metoprolol in human plasma and urine. Separation of metoprolol and atenolol (internal standard) was achieved on an Ace C18 column (5 μm, 250 mm×4.6 mm id) using fluorescence detection with λex=276 nm and λem=296 nm. The mobile phase consists of methanol–water (50:50, v/v) containing 0.1% TFA. The analysis was performed in less than 10 min with a flow rate of 1 mL/min. The assay was linear over the concentration range of 3 – 200 and 5 – 300 ng/mL for plasma and urine, respectively. The LOD were 1.0 and 1.5 ng/mL for plasma and urine, respectively. The LOQ were 3.0 and 5.0 ng/mL for plasma and urine, respectively. The extraction recoveries were found to be 95.6 ± 1.53 and 96.4 ± 1.75% for plasma and urine, respectively. Also, the method was successfully applied to three patients with hypertension who had been given an oral tablet of 100 mg metoprolol.  相似文献   

3.
A simple, selective and reliable LC‐MS/MS method was validated for simultaneous quantitation of darolutamide diastereomers in 50 μL mouse plasma using warfarin as an internal standard (IS) as per regulatory guidelines. Plasma samples were extracted by liquid–liquid extraction and the chromatographic separation was achieved on a Chiralpak IA column with an isocratic mobile phase 5 mm ammonium acetate–absolute alcohol (20:80, v/v) at a flow rate of 1.0 mL/min. Detection and quantitation was done in multiple reaction monitoring mode following the transitions m/z 397 → 202 and 307 → 250 for darolutamide diastereomers and the IS, respectively, in the negative ionization mode. The linearity range was 100–2400 ng/mL for each diastereomer. The intra‐ and inter‐day precisions were in the ranges of 1.78–4.20 and 4.34–14.6, and 3.63–4.74 and 4.78–5.15 for diastereomer‐1 and diastereomer‐2, respectively. Both diastereomers were found to be stable under different stability conditions. The validated method was applied to a pharmacokinetic study in mice. Following oral administration of darolutamide at 10 mg/kg, maximum concentration in plasma was 4189 and 726 ng/mL for diastereomer‐1 and diastereomer‐2, respectively. The terminal half‐life was found to be ~0.50 h for both the diastereomers. The AUC(0–t) was found to be 18,961 ng*h/mL for diastereomer‐1 and 1340 ng*h/mL diastereomer‐2.  相似文献   

4.
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of DRF-1042, a novel orally active camptothecin (CPT) analog, in human plasma. The sample preparation was a simple deproteinization with acidified methanol yielding almost 100% recovery of DRF-1042. An isocratic reverse-phase HPLC separation was developed on a Supelcosil-LC318 column (250 x 4.6 mm, 5 microm) with mobile phase consisting of 1% v/v triethylamine acetate, pH 5.5 and acetonitrile (80:20, v/v) at a fl ow rate of 1.0 mL/min. The eluate was monitored with a fluorescence detector set at excitation and emission wavelengths of 370 and 430 nm, respectively. The standard curves were linear (r(2) > 0.999) in the concentration ranges 5.0-2004 ng/mL. The lower limit of quantification (LLQ) of the assay was 5 ng/mL. The mean measured quality control (QC) concentrations (range 5 ng/mL to 40 microg/mL) deviated from the nominal concentrations in the range of -10.5-0.08 and -14.5-7.97%, inter- and intra-day, respectively. The inter- and intra-day precisions in the measurement of QC samples at four tested concentrations, were in the range 0.64-5.89% relative standard deviation (RSD) and 0.33-14.7% RSD, respectively. The method was found to be suitable for measurement of plasma concentrations above the calibration curve after serial dilutions. Stability of DRF-1042 was confirmed in a battery of studies, viz., on bench-top, in the auto-sampler, in the stock solutions, after four quick freeze-thaw cycles, up to one month at -20 degree C in human plasma and up to 2 months in the ex vivo samples. The method is simple, sensitive and reliable and has been successfully implemented to investigate the clinical pharmacokinetics of DRF-1042 in cancer patients in a phase I clinical trial.  相似文献   

5.
Quantification of bradykinin peptides in limited amounts of rat muscle tissue dialysate has been performed using a packed capillary LC-ESI-TOF-MS method. The micro dialysate samples (450 microL) with added internal standard were loaded onto a 1 mm x 5 mm loading column packed with 5 microm Kromasil C18 particles by a carrier solution of 0.1% formic acid in ACN/water (5:95, v/v) at a flow rate of 250 microL/min for online preconcentration of the analytes. Back-flushed elution onto a 150 mm x 0.5 mm Zorbax C18 column packed with 5 microm particles was conducted using a linear solvent ACN/H2O gradient containing 0.1% formic acid. (Tyr8)-bradykinin was used as an internal standard and was added to the dialysis sample prior to injection. Baseline separation of bradykinin, arg-bradykinin and (tyr8)-bradykinin was achieved within 10 min. Positive ESI was performed in the m/z range of 200-1300. The method was validated in the range 0.2-1.0 ng/mL dialysate, yielding correlation coefficients of 0.995 and 0.990 for bradykinin and arg-bradykinin, respectively. The within-assay and between-assay precisions were between 4.3-9.6% and 6.2-10.6%, respectively. Both arg-bradykinin and bradykinin were detected in dialysate from rat muscle tissue, at concentrations of 0.1 and 0.4 ng/mL for bradykinin and arg-bradykinin, respectively, confirming the presence of arg-bradykinin in rat muscles.  相似文献   

6.
An HPLC method was established and validated for the determination of compound FLZ, a synthetic novel anti-Parkinson's disease candidate drug, in rat plasma. FLZ and the internal standard bicyclol were extracted from plasma by solid-phase extraction method and analyzed on a Restek C18 column (4.6 x 250 mm, 5 microm) with a mobile phase consisting of methanol and water (60:40, v/v) at a flow rate of 1.0 mL/min. The detection wavelength was set at 320 nm. The calibration curve was linear within the concentration range from 25 to 500 ng/mL (r2 > 0.999), the limit of quantitation was 25 ng/mL and the average recovery was 92.0% with the RSD less than 5.9%. The relative standard deviation for intra- and inter-day precision was less than 3.8 and 6.9%, respectively. The established HPLC method was validated to be a simple, rapid and reliable procedure and applied to study the preclinical pharmacokinetics of FLZ in rat plasma, and it was the first time that the pharmacokinetics of FLZ had been investigated.  相似文献   

7.
 A simple, selective, sensitive, precise, simultaneous high performance liquid chromatographic analysis of serum samples and commercial tablet formulation containing hydrochlorothiazide, olmesartan medoxomil and irbesartan are reported. Good chromatographic separation was achieved using a μ-Bondapak, C18 column (15 cm×4.6 mm, 5 μm), and a mobile phase consisting of acetonitrile-0.2% acetic acid aqueous solution (50∶50, v/v) at a flow rate of 1.0 mL/min. The ultraviolet detector was set at a wavelength of 260 nm. Hydrochlorothiazide, olmesartan medoxomil, and irbesartan were eluted at 1.2, 3.8, and 4.4 min, respectively. No extraneous materials were found to interfere. The method uses protein precipitation with acetonitrile for the preparation of serum sample. The linear ranges for hydrochlorothiazide, olmesartan medoxomil, and irbesartan were 6.25-18.75, 20-60, and 75-225 ng/mL, respectively. The recoveries of hydrochlorothiazide, olmesartan medoxomil, and irbesartan in spiked samples were all greater than 98%, and their relative standard deviations were less than 2.0%. The limits of detection were 1, 2, and 2 ng/mL for hydrochlorothiazide, olmesartan medoxomil, and irbesartan, respectively, and the limits of quantification were 3 ng/mL, which allow their determination at the expected serum concentration levels.  相似文献   

8.
This study aimed to validate a sensitive and reliable analytical method for the pharmacokinetic study of atomoxetine in human plasma by liquid chromatography-electrospray ionization-tandem mass spectrometry. Metoprolol was used as an internal standard. After liquid-liquid extraction with methyl t-butyl ether, the supernatant was evaporated. The residue was then reconstituted and an aliquot was injected into the high performance liquid chromatographic system. Separation was performed on a Phenomenex Luna C18 column (2.0 mm × 100 mm, 3 μm particles) with a mobile phase of 10 mM ammonium formate buffer: methanol = 10: 90 (v/v). Tandem mass spectrometry was performed in the electrospray ionization positive ion mode using the multiple reaction monitoring mode for quantification. The mass transition pairs of m/z 256 → 44 for atomoxetine and m/z 268 → 116 for the internal standard were used. The flow rate of the mobile phase was 0.25 mL/min and the retention times of atomoxetine and the internal standard were found to be 1.0 and 0.9 min, respectively. The calibration curve for atomoxetine was linear in the concentration range of 1–750 ng/mL (r 2 = 0.9992) with a lower limit of quantification of 1 ng/mL. The mean accuracy for atomoxetine was 93–102%. The coefficients of variation (precision) in the intra- and inter-day validation for atomoxetine were 4.0–6.8 and 1.1–9.6%, respectively. The pharmacokinetic parameters of atomoxetine were evaluated after administration of a 40-mg single oral dose to twelve healthy male volunteers. The mean AUC0–24 h, C max, T max and T 1/2 for atomoxetine were 1.9 ± 0.8 μg h/mL, 0.34 ± 0.11 μg/mL, 1.0 ± 0.5 h and 3.9 ± 1.3 h, respectively.  相似文献   

9.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

10.
Meditinib (ME) is a novel tyrosine kinase inhibitor used as an antichronic myeloid leukemia drug. A simple, sensitive and specific LC/MS/MS method was developed and validated for the analysis of ME and its metabolite demethylation meditinib (PI) in monkey plasma using naltrexone as the internal standard. Sample preparation involved protein precipitation with methanol. The analysis was carried out on an Agilent C8 column (3.5 µm, 2.1 × 50 mm). Elution was achieved with a mobile phase gradient varying the proportion of a water solution containing 0.1% formic acid (solvent A) and a 0.1% formic acid in methanol solution (solvent B) at a flow rate of 300 μL/min. The method had a linear calibration curve over the concentration range of 2–1000 ng/mL for ME and 2–1000 ng/mL for PI. The lower limits of quantification of ME and PI were 2 and 2 ng/mL, respectively. The intra‐ and inter‐day precision values were <15% and accuracy values were within ±10.0%. The mean recoveries of ME and PI from plasma were >85%. The assay has been successfully used for pharmacokinetic evaluation of ME and PI using the monkey as an animal model, and those data are reported for the first time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive and specific liquid chromatography-electrospray ionization mass spectrometry method is developed and validated for the identification and quantitation of azithromycin in human plasma. After the addition of the internal standard and 1.0M sodium hydroxide solution, plasma samples are extracted with a methylene chloride-ethyl acetate mixture (20:80, v/v). The organic layer is evaporated under a stream of nitrogen at 40 degrees C. The residue is reconstituted with 200 microL of the mobile phase. The compounds are separated on a prepacked Shimadzu Shim-pack VP-ODS C18 (5 microm, 150 mm x 2.0 mm) column using a mixture of acetonitrile-water (65:35) (0.5% triethylamine, pH was adjusted to 6.2 with acetic acid) as the mobile phase. Detection is performed on a single quadrupole mass spectrometer by selected ion monitoring mode via electrospray ionization source. The method is fully validated and linear calibration curves are obtained in the concentration ranges from 5 to 2000 ng/mL. The intra- and inter-batch relative standard deviations at four different concentration levels are all < 10%. The limit of detection and quantitation are 2 ng/mL and 5 ng/mL, respectively. The proposed method enables the unambiguous identification and quantitation of azithromycin for pharmacokinetic, bioavailability, or bioequivalence studies.  相似文献   

12.
张华  杨鑫  马莺  董爱军  张英春 《色谱》2008,26(3):392-394
建立了一种同时测定饲料中角黄素和虾青素的固相萃取-高效液相色谱法(HPLC)。样品由乙腈提取,经LC-NH2固相萃取小柱净 化,洗脱剂为乙腈-甲苯(体积比为3∶1),洗脱液被浓缩后进行HPLC分析,色谱柱为ZORBAX Eclipse XDB-C18柱(150 mm×4.6 mm,5 μ m),流动相为乙腈-甲醇(体积比为95∶5),流速1.0 mL/min,采用二极管阵列检测器检测,检测波长为474 nm;外标法定量。角黄素和 虾青素的线性范围分别为1.0~30.0 mg/L和1.0~20.0 mg/L,相关系数分别为0.9990和0.9991,回收率为90%~101%,相对标准偏差为 0.62%~3.68%,检出限分别为0.84和0.60 mg/L。该方法简便、快速、准确,可用于饲料中角黄素和虾青素的同时测定。  相似文献   

13.
A sensitive and specific LC-MS/MS assay for the determination of paclitaxel and its 3'p- and 6-alpha-hydroxy metabolites is presented. A 200 microL plasma aliquot was spiked with a 13C6-labeled paclitaxel internal standard and extracted with 1.0 mL tert-butylmethylether. Dried extracts were reconstituted in 0.1 M ammonium acetate-acetonitrile (1:1, v/v) and 25 microL volumes were injected onto the HPLC system. Separation was performed on a 150 x 2.1 mm C18 column using an alkaline eluent (10 mm ammonium hydroxide-methanol, 30:70, v/v). Detection was performed by positive ion electrospray followed by tandem mass spectrometry. The assay quantifies a range for paclitaxel from 0.25 to 1000 ng/mL and metabolites from 0.25 to 100 ng/mL using 200 microL human plasma samples. Validation results demonstrate that paclitaxel and metabolite concentrations can be accurately and precisely quantified in human plasma. This assay is now used to support clinical pharmacologic studies with paclitaxel.  相似文献   

14.
Atrasentan is an endothelin antagonist selective for the ET(A) receptor in development at Abbott Laboratories for the treatment of cardiovascular disease and cell proliferation disorders. A simple and sensitive chromatographic method for the determination of atrasentan in human plasma has been developed and validated. The analytical method involves acidification of the plasma samples with 0.3 N HCl prior to extraction with 1:1 (v:v) hexane/tert-butylmethylether. The organic extract was evaporated to dryness, reconstituted with 20:80 (v:v) acetonitrile/0.05 M K(2)HPO(4) and washed with 75:25 (v:v) hexane/tert-butylmethylether. The organic layer was discarded and the aqueous layer was injected into the HPLC. Atrasentan and internal standard (ABT-790) were separated from interference using a 250 x 4.6 mm, 5 microm, 120 A Phenomenex Spherisorb C(8) analytical column with a 50 x 4.6 mm, Alltech Absorbosphere 5 microm CN guard cartridge using a mobile phase consisting of 25:15:5:55 (v:v:v:v) acetonitrile/isopropanol/methanol/0.05 M K(2)HPO(4), pH 7.0, at a flow rate of 1.0 mL/min. Fluorescence detection was achieved using lambda(ex) 278 nm and lambda(em) 322 nm. For a 1.0 mL plasma sample volume, the limit of quantitation was approximately 200 pg/mL. The method was linear from 0.2 to 1300 ng/mL (r(2) = 0.9986). Inter- and intra-day assay RSD (n = 6) were less than 10%. Mean accuracy determinations showed the quality control samples to range between 94 and 99% of the theoretical concentration.  相似文献   

15.
建立奥曲肽的高效液相色谱定量分析方法。色谱柱为Eclipse plus C18柱(4.6 mm×250 mm,5 μm),流动相为乙腈-0.25%高氯酸水溶液(体积比为30∶70),流量为1.0 mL/min,检测波长为210 nm,柱温为25℃。奥曲肽的质量浓度在4.38~219 μg/mL范围内与色谱峰面积成良好的线性关系,相关系数为0.9999,检出限为1.1 ng,定量限为2.19 ng。测定结果的相对标准偏差为0.26%~0.46% (n=5),加标回收率为97.41%~100.26%。该方法简便、快速、准确,适用于奥曲肽原料药与制剂的定量分析。  相似文献   

16.
A rapid, simple, sensitive and selective LC‐MS/MS method has been developed and validated for quantification of nifedipine (NF) and atenolol (AT) in human plasma (250 μL). The analytical procedure involves a one‐step liquid–liquid extraction method using carbamazepine as an internal standard (IS). The chromatographic resolution was achieved on a Hypurity Advance C18 column using an isocratic mobile phase consisting of 5 mm ammonium acetate–acetonitrile (15:85, v/v) at flow rate of 1.0 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 2 min and elution of NF, AT and IS occurred at 0.79, 1.04 and 0.76 min, respectively. A detailed method validation was performed as per the FDA guidelines and the standard curves found to be linear in the range of 1.02–101 ng/mL for NF and 5.05–503 ng/mL for AT, with a coefficient of correlation of ≥0.99 for both the drugs. NF and AT were found to be stable in a battery of stability studies, viz. bench‐top, auto‐sampler and repeated freeze–thaw cycles. The validated assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A bioanalytical method for the quantification of rosiglitazone in rat plasma and tissues (adipose tissue, heart, brain, bone, and kidney) using LC–MS/MS was developed and validated. Chromatographic separation was achieved on a Gemini C18 column (50 × 4.6 mm, 3 μm) using a mobile phase consisting of 10 mM ammonium formate (pH 4.0) and acetonitrile (10:90, v/v) at a flow rate of 0.8 mL/min and injection volume of 10 μL (internal standard: pioglitazone). LC–MS detection was performed with multiple reaction monitoring mode using target ions at m/z → 358.0 and m/z → 357.67 for rosiglitazone and pioglitazone (internal standard), respectively. The calibration curve showed a good correlation coefficient (r2) over the concentration range of 1–10,000 ng/mL. The mean percentage recoveries of rosiglitazone were found to be over the range of 92.54–96.64%, with detection and lower quantification limit of 0.6 and 1.0 ng/mL, respectively. The developed method was validated per U.S. Food and Drug Administration guidelines and successfully utilized to measure rosiglitazone in plasma and tissue samples. Further, the developed method can be utilized for validating specific organ-targeting delivery systems of rosiglitazone in addition to conventional dosage forms.  相似文献   

18.
Solid dispersion technology was used to improve the bioavailability of probucol due to its low hydrophilicity and high lipophilicity. In this study, a highly rapid and sensitive supercritical fluid chromatography with tandem mass spectrometry method was optimized and validated for the determination of probucol in beagle dog plasma with diazepam as an internal standard. The analyte and internal standard were extracted by acetone and then separated on a polar 2‐ethylpyridine phase column (100 mm × 3 mm, 1.7 μm) at a flow rate of 1.0 mL/min using CO2 (≥99.99%) and methanol (95:5, v/v) as the mobile phase. The mass transition ion‐pair was m/z 515.6→236.2 and 285.2→193.1 for probucol and internal standard, respectively. Excellent linearity was observed over the concentration range of 5–5000 ng/mL (r2 ≥ 0.9999) with a lower limit of quantification of 5 ng/mL. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The proposed method was accurate, rapid and reproducible, which was successfully applied to a bioavailabilty evaluation of probucol solid dispersion tablets.  相似文献   

19.
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O-beta-D-glucopyranoside-7-O-alpha-L-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C(18) column (250 x 4.6 mm, 5 microm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and isoquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.  相似文献   

20.
A highly sensitive liquid chromatographic-tandem mass spectrometric method (LC-MS-MS) is developed to quantitate ranolazine in human plasma. The analyte and internal standard tramadol are extracted from plasma by liquid-liquid extraction using diethyl ether-dichloromethane (60:40 v/v), and separated on a Zorbax extend C(18) column using methanol-10mM ammonium acetate (60:40 v/v, pH 4.0) at a flow of 1.0 mL/min. Detection is carried out by multiple reaction monitoring on a QtrapTM LC-MS-MS system with an electrospray ionization interface. The assay is linear over the range 10-5000 ng/mL with a limit of quantitation of 10 ng/mL and a lower limit of detection (S/N > 3) of 1 ng/mL. Intra- and inter-day precision are < 3.1% and < 2.8%, respectively, and the accuracy is in the range 96.7-101.6%. The validated method is successfully used to analyze the drug in samples of human plasma for pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号