首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a novel approach for the production of patterned films of nanometer-sized Au/Ag bimetallic core/shell nanoparticles (NPs) on silicon wafers. In this approach, we first self-assembled monodisperse Au NPs, through specific Au...NH(2) interactions, onto a silicon substrate whose surface had been modified with a pattern of 3-aminopropyltrimethoxysilane (APTMS) groups to form a sandwich structure having the form Au NPs/APTMS/SiO(2). These Au NPs then served as seeds for growing the Au/Ag bimetallic core/shell NPs: we reduced silver ions to Ag metal on the surface of Au seeds under rapid microwave heating in the presence of sodium citrate. Energy-dispersive X-ray analysis confirmed that the Au/Ag bimetallic core/shell NPs grew selectively on the regions of the surface of the silicon wafer that had been patterned with the Au seeds. Scanning electron microscopy images revealed that we could synthesize well-scattered, high-density (>82%) thin films of Au/Ag bimetallic core/shell NPs through the use of this novel strategy. The patterned structures that can be formed are simple to produce, easily controllable, and highly reproducible; we believe that this approach will be useful for further studies of nanodevices and their properties.  相似文献   

2.
Chemical patterns consisting of poly(2-vinyl pyridine) (P2VP) brushes in a background of a cross-linked polystyrene (PS) mat enabled the highly selective placement of citrate-stabilized Au nanoparticles (NPs) in arrays on surfaces. The cross-linked PS mat prevented the nonspecific binding of Au NPs, and the regions functionalized with P2VP brushes allowed the immobilization of the particles. Isolated chemical patterns of feature sizes from hundreds to tens of nanometers were prepared by standard lithographic techniques. The number of 13 nm Au NPs bound per feature increased linearly with increasing area of the patterns. This behavior is similar to previous reports using 40 nm particles or larger. Arrays of single NPs were obtained by reducing the dimensions of patterned P2VP brushes to below ~20 nm. To generate dense (center-to-center distance = 80 nm) linear chemical patterns for the placement of rows of single NPs, a block-copolymer (BCP)-assisted lithographic process was used. BCPs healed defects associated with the standard lithographic patterning of small dimensions at high densities and led to highly registered, linear, single NP arrays.  相似文献   

3.
Here we describe the oxidation of <4 nm diameter Au nanoparticles (NPs) attached to indium tin oxide-coated glass electrodes in Br(-) and Cl(-) solution. Borohydride reduction of AuCl(4)(-) in the presence of hexanethiol or trisodium citrate (15 min) led to Au NPs <4 nm in diameter. After electrochemical and ozone removal of the hexanthiolate ligands from the thiol-coated Au NPs, Au oxidation peaks appeared in the range 0-400 mV vs Ag/AgCl (1 M KCl), which is 850-450 mV negative of the bulk Au oxidation peak near 850 mV. The oxidation potential of citrate-coated Au NPs is in the 300-500 mV range and those of 4 and 12 nm diameter Au NPs in the 660-780 mV range. The large negative shift in potential agrees with theory for NPs in the 1-2 nm diameter range. The oxidation potential of Au in Cl(-) solution is positive of that in Br(-) solution, but the difference decreases dramatically as the NP size decreases, showing less dependence on the halide for smaller NPs.  相似文献   

4.
Patterned self-assembled monolayers (SAMs) of alkanethiolates (AT) on Au and Ag substrates were imaged and characterized by scanning photoelectron microscopy (SPEM). The patterns were prepared in situ by direct writing with the zone-plate-focused X-ray beam provided by the SPEM station. Whereas both AT/Au and AT/Ag behaved alike upon the irradiation, which resulted in similar contrasts in the fabricated patterns and similar microspot spectra from the irradiated areas, the intensity relationship between the patterned and nonpatterned areas changed by different pathways for the Au and Ag substrates after the exposure of the patterns to ambient. The SPEM data imply that weakly bound molecular fragments are desorbed from the irradiated areas upon air exposure in the case of Ag, whereas adsorption of airborne molecules from ambient occurs for the Au substrate. The origin of the observed differences is presumably related to the specific branching patterns of irradiation-induced modification of AT/Au and AT/Ag.  相似文献   

5.
Herein we report the generation of Au nanoparticles (NPs) by sparingly soluble acetanilide in water. We also report the formation of linear chain-like superstructures of self-assembled Au NPs, in the presence of excess acetanilide. This was achieved in two different ways. In the first method, acetanilide was added, with increasing concentration, into aqueous HAuCl(4) to produce Au NPs as well as for the formation of assembly, which varied according to the concentration of acetanilide. The other route involved formation of spherical Au NPs at the lowest concentration of acetanilide, which was followed by the formation of assembly of various lengths upon further addition of variable amount of acetanilide. The assemblies were stable in aqueous solution for days with characteristic UV-vis absorption spectra consisting of two peaks. While the wavelength of the first peak remained the same, the position of the second peak changed to longer wavelength with increasing acetanilide concentration. Interestingly, the linear chain-like arrays could be broken into individual particles by first dilution of the solution concentration followed by treatment with ultrasonic waves. The individual Au NPs again formed linear chain-like arrays upon addition of excess acetanilide.  相似文献   

6.
Au–Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1 × 10−13 M and an enhancement factor of 8.6 × 106 could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation.  相似文献   

7.
Au core Ag shell composite structure nanoparticles were prepared using a sol method. The Au core Ag shell composite nanoparticles were loaded on TiO2 nanoparticles as support using a modified powder–sol method, enabling the generation of Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone. The sols were characterized by means of ultraviolet–visible light (UV–Vis) reflection spectrometry, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The activity of the Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone was evaluated and the effect of Cl? anions on the photocatalytic activity of the catalysts was highlighted. Results showed that Au @ Ag/TiO2 prepared via the modified powder–sol route in the presence of an appropriate amount of NaCl solid as demulsifier had better activity in the photocatalytic decomposition and elimination of ozone. At the same time, Au @ Ag/TiO2 catalysts had better ability to resist poisonous Cl? anions than conventional Au/TiO2 catalyst. The reasons could be, first, that NaCl was capable of reducing the concentration of free Ag+ by adsorption on the surface of Ag particles forming AgCl and enhancing the formation of Au core Ag shell particles, leading to a better resistance to Cl? anions of the catalysts, and, second, AgCl took part in the photocatalytic decomposition of ozone together with Au @ Ag/TiO2 catalysts and had a synergistic effect on the latter, resulting in better photocatalytic activity of Au @ Ag/TiO2 catalysts.  相似文献   

8.
This paper describes the preparation of Au core-Au-Ag shell nanoparticles (NPs) in different morphologies by controlling both the pH and the glycine concentration. Using a seed-growth method, we prepared high-quality Au core-Au-Ag shell NPs from a glycine solution under alkaline conditions (pH>8.5). By controlling both the pH and the glycine concentration, we prepared dumbbell-shaped and peanut-shaped Au core-Au-Ag shell NPs readily by depositing gold and silver, reduced by ascorbate, onto the gold nanorods. We have found that the glycine concentration that is optimal for preparing high-quality Au core-Au-Ag shell NPs differs at the various values of pH. At pH<8.5, the glycine concentration is not important, but, when preparing dumbbell- and peanut-shaped Au core-Au-Ag shell NPs, it should be greater than 50 mM and greater than 20 mM at pH 9.5 and 10.5, respectively. Glycine plays a number of roles during the synthesis of the Au core-Au-Ag shell NPs by controlling the solution pH, altering the reduction potentials of gold and silver ions through forming complexes with metal ions (Au(+) and Ag(+)), minimizing the formation of Ag(2)O, AgCl, and AgBr precipitates, and stabilizing the thus-prepared NPs. At pH 9.7, we observed the changes in the morphologies of the Au core-Au-Ag shell NPs-from regular (rectangular) to peanut- and dumbbell-shaped, and finally to jewel-, diamond-, and/or sphere-shaped-that occurred during the course of a 60-min reaction. In addition, we were able to affect the shapes and sizes of the Au core-Au-Ag shell NPs by controlling the reaction time.  相似文献   

9.
In this paper we report the results on the use of L-ascorbic acid (AA) in assembling metal nanoparticles (NPs) into three-dimensional fibrous structures. The degradation product of AA leads to the formation of fibrous structures, which has been used as a template for deposition of metal NPs such as Au, Pt, and Ag. We also report that AA can be used as the reducing agent in generating Au NPs. The spontaneous fiber formation and formation of Au NPs by AA have been coupled to generate fibers made up of composite of Au NPs and the polymer from the degradation products of AA. These fibers appear in the form of a fiber bundle with branched structures having overall dimensions on the order of several millimeters. They have typical widths of 1-4 microm with length of each segment of fiber bundle on the order of 40 microm. The composite fiber bundle has been found to be electrically conducting with surface resistivity on the order of 2.16x10(3) Omegacm. UV-vis spectroscopy, X-ray diffraction, transmission and scanning electron microscopic measurements were used to establish the formation of fibrous structures in the medium.  相似文献   

10.
This article presents a mechanistic study on the galvanic replacement reaction between 11- and 14-nm multiply twinned particles (MTPs) of Ag and HAuCl4 in chloroform. We monitored both morphological and spectral changes as the molar ratio of HAuCl4 to Ag was increased. The details of reaction were different from previous observations on single-crystal Ag nanocubes and cuboctahedrons. Because Au and Ag form alloys rapidly within small MTPs rich in vacancy and grain boundary defects, a complete Au shell did not form on the surface of each individual Ag template. Instead, the replacement reaction resulted in the formation of alloy nanorings and nanocages from Ag MTPs of decahedral or icosahedral shape. For the nanorings and nanocages derived from 11-nm Ag MTPs, the surface plasmon resonance (SPR) peak can be continuously shifted from 400 to 616 nm. When the size of Ag MTPs was increased to 14 nm, the SPR peak can be further shifted to 740 nm, a wavelength sought by biomedical applications. We have also investigated the effects of capping ligands and AgCl precipitate on the replacement reaction. While hollow structures were routinely generated from oleylamine-capped Ag MTPs, we obtained very few hollow structures by using a stronger capping ligand such as oleic acid or tri-n-octylphosphine oxide (TOPO). Addition of extra oleylamine was found to be critical to the formation of well-controlled, uniform hollow structures free of AgCl contamination thanks to the formation of a soluble complex between AgCl and oleylamine.  相似文献   

11.
We report a new, simple strategy to apply honeycomb films for the patterning of colloidal particles. By combination of a “bottom‐up” breath figure method and the electrochemical properties of the honeycomb films of ferrocenyl‐based oligomers, highly ordered hybrid membranes coated with ring‐like patterning of 0D‐ and 1D‐Ag nanoparticles (NPs) have been fabricated. One interesting phenomenon is that the nucleation and adsorption of Ag dots occurred preferentially at the edges of the micropores. The hybrid membranes exhibited richly electrochemical activities towards reduction of iodate and enhanced effectively catalytic reduction of organic dyes. We believe that this method can be used to decorate and/or assemble functional metal NPs such as Au, Pd, and Cu on honeycomb‐patterned materials for the further applications of photonics, sensors, and catalysis.  相似文献   

12.
A C18 monolayer-functionalized Si surface is electrochemically patterned to yield a carboxylic acid-terminated pattern. Tyramine is covalently linked to the pattern to yield an encoded nanostructure for the enzyme tyrosinase. The biocatalytic oxidation of the tyramine residues yields catechol moieties that control the assembly of boronic acid-functionalized Au nanoparticles (NPs) or magnetic NPs. The different NPs are linked to the patterns by the formation of complexes between the boronic acid residues or Fe3+ ions and the catechol ligands.  相似文献   

13.
In this paper, we exploited a unique procedure for obtaining thorny gold nanoparticles (Au NPs) with controllable length of thorns without using seeds and surfactants. The obtained Au NPs exhibited shape-determined surface-enhanced Raman spectroscopy activity toward rhodamine 6G.  相似文献   

14.
构建了具有表面增强拉曼散射(SERS)活性的二维有序环状与盘状的银纳米粒子结构, 利用CTAB包覆银纳米粒子的氯仿溶液直接在图案化的金基底上进行去湿, 当改变银纳米粒子的浓度时可以得到不同的图案. 利用原子力显微镜(AFM)对其结构进行了表征, 以4-巯基吡啶作为探针分子, 采用表面增强拉曼成像技术研究了这种基底的SERS活性, 这将为SERS的研究开拓新的领域.  相似文献   

15.
We demonstrate the multiple plasmonic effect on the photocurrent properties of photoanodes containing Ag or Au nanoparticles (NPs) loaded onto titanium dioxide film (Ag–TiO2 or Au–TiO2) on Au grating surfaces. Ag–TiO2 or Au–TiO2 nanocomposite particles are prepared by a flame spray pyrolysis route. The structures and morphologies of the prepared products are characterized by high‐resolution transmission electron microscopy. The Ag–TiO2 or Au–TiO2 composite NPs are deposited by spin coating onto the Au grating surfaces. The photoanode electrode is a layered structure of blu‐ray disc‐recordable grating substrate/Au/Ag (or Au)–TiO2/dye/electrolyte/indium‐tin oxide. The plasmonic effect is induced when Ag or Au NPs are located within the propagating surface plasmon (SP) field on the Au grating surface. The short‐circuit photocurrent is increased by exciting the grating‐coupled propagating SP on the Au gratings and is further enhanced by positioning the Ag or Au NPs within the grating‐coupled SP field. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
With the assistance of Polyvinylpyrrolidone (PVP), AgCl/Ag composites were fabricated in N, N-Dimethylformamide (DMF) solvent via a photoactivated route. The size of AgCl particles was in the range of 500 nm to 1 μm and the Ag particle's diameter was about 10–20 nm. Different from those core–shell structures reported before, the Ag nanoparticles were dispersed uniformly both on the surface and in the body of AgCl particles. The generation of such kind of composites was resulted from the reducing ability of DMF and light irradiation during the formation of AgCl particles. The as-obtained AgCl/Ag composites presented great activity for both surface-enhanced Raman scattering (SERS) detection and visible light photocatalytic degradation of organic dyes. Additionally, the AgCl/Ag composites could maintain high photocatalytic activity even though the ambient temperature was as low as 15 °C and recycle photocatalysis experiments indicated that the photocatalyst exhibited higher stability. Such kind of AgCl/Ag composites holds great potential for environmental monitoring devices and pollutant treatments.  相似文献   

17.
In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl4 and H2PtCl4. In the second step, the Ag component was selectively dealloyed with nitric acid (HNO3), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl4 and H2PtCl6). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the “ensemble” effect.  相似文献   

18.
《Comptes Rendus Chimie》2008,11(9):1004-1009
The paper reports on the electrocatalytic activity of boron-doped diamond (BDD) electrodes electrochemically modified with palladium (Pd) or gold nanoparticles (Au NPs) towards oxygen reduction reaction (ORR) in alkaline medium. The BDD/Pd NP interface shows a well-defined diffusion-controlled voltammetric oxygen reduction peak at −0.25 V vs. Ag/AgCl. This is more positive than the ORR peak at −0.59 V vs. Ag/AgCl observed on BDD/Au-NP composite electrodes. The ORR proceeds via a four-electron process in both cases.  相似文献   

19.
Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.  相似文献   

20.
Adenosine triphosphate (ATP)-capped silver nanoparticles (ATP-Ag NPs) were synthesized by reduction of AgNO(3) with borohydride in water with ATP as a capping ligand. The NPs obtained were characterized using transmission electron microscopy (TEM), UV-vis absorption spectroscopy, X-ray diffraction, and energy-dispersive X-ray analysis. A typical preparation produced ATP-Ag NPs with diameters of 4.5 ± 1.1 nm containing ~2800 Ag atoms and capped with 250 ATP capping ligands. The negatively charged ATP caps allow NP incorporation into layer-by-layer (LbL) films with poly(diallyldimethylammonium) chloride at thiol-modified Au electrode surfaces. Cyclic voltammetry in a single-layer LbL film of NPs showed a chemically reversible oxidation of Ag NPs to silver halide NPs in aqueous halide solutions and to Ag(2)O NPs in aqueous hydroxide solutions. TEM confirmed that this takes place via a redox-driven solid-state phase transformation. The charge for these nontopotactic phase transformations corresponded to a one-electron redox process per Ag atom in the NP, indicating complete oxidation and reduction of all Ag atoms in each NP during the electrochemical phase transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号