首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bicyclic γ-silyloxy-β-hydroxy-α-diazoketones, in which the Cβ-Cγ bond is the ring fusion bond, productively fragment when treated with tin(IV) chloride to provide medium-sized cyclic 2-alkynones. This method provides good to excellent yields of 10-, 11-, and 12-membered alkynone products.  相似文献   

2.
The novel cationic diiron μ-allenyl complexes [Fe(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 4a; R = Ph, 4b) have been obtained in good yields by a two-step reaction starting from [Fe(2)Cp(2)(CO)(4)]. The solid state structures of [4a][CF(3)SO(3)] and of the diruthenium analogues [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(2)(α,β)-C(α)(H)=C(β)=C(γ)(R)(2)}][BPh(4)] (R = Me, [2a][BPh(4)]; R = Ph, [2c][BPh(4)]) have been ascertained by X-ray diffraction studies. The reactions of 2c and 4a with Br?nsted bases result in formation of the μ-allenylidene compound [Ru(2)Cp(2)(CO)(2)(μ-CO){μ-η(1):η(1)-C(α)=C(β)=C(γ)(Ph)(2)}] (5) and of the dimetallacyclopentenone [Fe(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)=C(β)(C(γ)(Me)CH(2))C(=O)}] (6), respectively. The nitrile adducts [Ru(2)Cp(2)(CO)(NCMe)(μ-CO){μ-η(1):η(2)-C(α)(H)=C(β)=C(γ)(R)(2)}](+) (R = Me, 7a; R = Ph, 7b), prepared by treatment of 2a,c with MeCN/Me(3)NO, react with N(2)CHCO(2)Et/NEt(3) at room temperature, affording the butenolide-substituted carbene complexes [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(R)(2)OC(=O)C[upper bond 1 end](H)] (R = Me, 10a; R = Ph, 10b). The intermediate cationic compound [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (9) has been detected in the course of the reaction leading to 10a. The addition of N(2)CHCO(2)Et/NHEt(2) to 7a gives the 2-furaniminium-carbene [Ru(2)Cp(2)(CO)(μ-CO){μ-η(1):η(3)-C(α)(H)[upper bond 1 start]C(β)C(γ)(Me)(2)OC(OEt)C[upper bond 1 end](H)](+) (11). The X-ray structures of 10a, 10b and [11][BF(4)] have been determined. The reactions of 4a,b with MeCN/Me(3)NO result in prevalent decomposition to mononuclear iron species.  相似文献   

3.
Ring opening reactions of 2-cyclohexylidene-3,3-dimethylcyclopropanone acetal (1) are readily induced by treatment of hydrogen chloride in various solvents. Bond cleavage takes place at the C1-C2 or C2-C3 bond, and the ratio of C1-C2/C2-C3 cleavages changes from >99/1 to <1/99 depending on the solvent. The two modes of bond cleavage must be initiated by protonations at the carbon-carbon double bond and the acetal oxygen, respectively. The regioselectivity can be rationalized by the rate-determining protonation at carbon and the equilibrium protonation at oxygen.  相似文献   

4.
The CASSCF and CASPT2 methodologies have been used to explore the potential energy surfaces of lumisantonin in the ground and low-lying triplet states along the photoisomerization pathways. Calculations indicate that the (1)(nπ*) state is the accessible low-lying singlet state with a notable oscillator strength under an excitation wavelength of 320 nm and that it can effectively decay to the (3)(ππ*) state through intersystem crossing in the region of minimum surface crossings with a notable spin-orbital coupling constant. The (3)(ππ*) state, derived from the promotion of an electron from the π-type orbital mixed with the σ orbital localized on the C-C bond in the three-membered alkyl ring to the π* orbital of conjugation carbon atoms, plays a critical role in C-C bond cleavage. Based on the different C-C bond rupture patterns, the reaction pathways can be divided into paths A and B. Photolysis along path A arising from C1-C5 bond rupture is favorable because of the dynamic and thermodynamic preferences on the triplet excited-state PES. Path B is derived from the cleavage of the C5-C6 bond, leading first to a relatively stable species, compared to intermediate A-INT formed on the ground state PES. Accordingly, path B is relatively facile for the pyrolytic reaction. The present results provide a basis to interpret the experimental observations.  相似文献   

5.
Pathways in the degradation of the C(6) 1,2-dicarbonyl sugar (osone) D-glucosone 2 (D-arabino-hexos-2-ulose) in aqueous phosphate buffer at pH 7.5 and 37 °C have been investigated by (13)C and (1)H NMR spectroscopy with the use of singly and doubly (13)C-labeled isotopomers of 2. Unlike its 3-deoxy analogue, 3-deoxy-D-glucosone (3-deoxy-D-erythro-hexos-2-ulose) (1), 2 does not degrade via a 1,2-hydrogen shift mechanism but instead initially undergoes C1-C2 bond cleavage to yield d-ribulose 3 and formate. The latter bond cleavage occurs via a 1,3-dicarbonyl intermediate initially produced by enolization at C3 of 2. However, a careful monitoring of the fates of the sketetal carbons of 2 during its conversion to 3 revealed unexpectedly that C1-C2 bond cleavage is accompanied by C1-C2 transposition in about 1 out of every 10 transformations. Furthermore, the degradation of 2 is catalyzed by inorganic phosphate (P(i)), and by the P(i)-surrogate, arsenate. C1-C2 transposition was also observed during the degradation of the C(5) osone, D-xylosone (D-threo-pentose-2-ulose), showing that this transposition may be a common feature in the breakdown of 1,2-dicarbonyl sugars bearing an hydroxyl group at C3. Mechanisms involving the reversible formation of phosphate adducts to 2 are proposed to explain the mode of P(i) catalysis and the C1-C2 transposition. These findings suggest that the breakdown of 2 in vivo is probably catalyzed by P(i) and likely involves C1-C2 transposition.  相似文献   

6.
Electron transfer cycloreversion of the methoxy substituted oxetane 1b results in the production of trans-anethole and benzaldehyde through C2-C3 bond cleavage. trans-Anethole radical cation has been detected as transient intermediate by laser flash photolysis.  相似文献   

7.
In this paper a synthetic pathway to the modified 5,10:13,14-bisfragmentation cholestane derivatives 8-14 is described. The synthesis involves introduction of the 5α- and 14α-hydroxyl groups in the cholestane molecule and subsequent cleavage of the C(5)-C(10) bond in 5α,14α-dihydroxycholestan-3β-yl acetate (4) with the HgO/I2 reagent and the C(13)-C(14) bond in the stereoisomeric 14α-hydroxy-5,10-secosteroids 5 and 6 with the Pb(OAc)4/I2 reagent. Complete and unambiguous 1H and 13C NMR resonance assignments of the obtained secosteroids, as well as the solution conformations of their 10- and 9-membered rings were determined by extensive analysis of 1D and 2D NMR spectral data. The structures and the solid-state conformations of 5,10-secosteroids 5-7 were confirmed by X-ray analysis. All diseco-compounds have a novel 5,10:13,14-disecocholestane skeleton.  相似文献   

8.
The synthesis and characterization of novel cis-1,2-disilylenylethene [cis-LSi{C(Ph)=C(H)}SiL] (2; L=PhC(NtBu)(2)) and a singlet delocalized biradicaloid [LSi(μ(2)-C(2)Ph(2))(2)SiL] (3) are described. Compound 2 was prepared by the reaction of [{PhC(NtBu)(2)}Si:](2) (1) with one equivalent of PhC[triple chemical bond]CH in toluene. Compound 3 was synthesized by the reaction of 1 with two equivalents of PhC[triple chemical bond]CPh in toluene. The results suggest that the reaction proceeds through an [LSi{C(Ph)==C(Ph)}SiL] intermediate, which then reacts with another molecule of PhC[triple chemical bond]CPh to form 3. Compounds 2 and 3 have been characterized by X-ray crystallography and NMR spectroscopy. X-ray crystallography and DFT calculations of 3 show that the singlet biradicals are stabilized by the amidinate ligand and the delocalization within the "Si(μ(2)-C(2)Ph(2))(2)Si" six-membered ring.  相似文献   

9.
A series of alkynethiolate gold(I) derivatives have been synthesised by the cleavage of 4-monosubstituted 1,2,3-thiadiazoles in the presence of strong bases. The syntheses of the 1.2,3-thiadiazoles with p-cyanophenyl, p-tolyl, 2-thienyl, 3-thienyl and 9,9-dimethylfluoren-2-yl fragments are also described. All the complexes have been characterised by spectroscopic techniques and the complexes [Au(p-CH3-C6H4-C[triple bond]C-S)PPh3], [Au(3-C4H3S-C[triple bond]C-S)PPh3] and PPN[Au(p-CH3-C6H4-C[triple bond]C-S)(C6F5)] by X-ray analysis. The electrochemically polymerizable mononuclear bis(alkynethiolate) gold(I) complex PPN[Au(3-C4H3S-C[triple bond]C-S)2] is also described, including its electropolymerization and electrochemical properties.  相似文献   

10.
A variety of differently substituted 6‐ and 7‐arylchromenes such as that depicted undergo photoinduced C? O bond cleavage to yield colored o‐quinonoid intermediates. A combined analysis of μs–ms (laser flash) and real‐time kinetic data show that the o‐quinonoid intermediates decay faster when the C2‐aryl and C6‐/C7‐aryl rings contain electron‐donating and electron‐accepting groups, respectively. Similarly, the decay occurs slowly for the reversed scenario, while intermediate decay rates are observed when both substituents are electron donating.

  相似文献   


11.
Photochemistry of Conjugated γ,δ-Epoxyenones: The Influence of a Hydroxy Substituent in ?-Position On 1n, π*- or 1π,π*-excitation (λ ≥ 347 or λ=254 nm), the ?-hydroxy-γ;,δ-epoxyenone 8 undergoes fission of the C(γ)? O bond followed by the cleavage of the C(δ)-C(?) bond. This hitherto unknown sequence of reactions is evidenced by the structure determination of the new type products 10–17 and 25 , including a synthetic proof for 12 and the X-ray analysis of 11 (X-ray data: triclinic P1; a=7,386(2), b=8,904(4), c=9,684(5)Å; α=82,29(4)°, β=74,46(3)°, γ=82,29(3)°; Z=2). The selective 1π,π*-excitation also induces competitive C(γ)-C(δ) bond cleavage to yield the bicyclic acetal 18 and a ketonium-ylide intermediate a , which photochemically forms a carbene b giving the allene 19 and the cyclopropene 20 . On 1n,π*-excitation of the acetate 9 the initial C(γ)-O bond fission is, in contrast to the behaviour of the corresponding alcohol 8 , followed by a 1,2-methyl shift affording (E/Z)- 28 or by a cyclization-autoxidation process yielding the lactone 29 .  相似文献   

12.
The potential energy surface for formation of 2-amino-5-hydroxy-7,9-dihydropurine-6,8-dione (5-OH-OG), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) from 8-oxoguanine (8-oxoG) has been mapped out using B3LYP density functional theory, the aug-cc-pVTZ and 6-31+G(d,p) basis sets and the IEF-polarizable continuum model (PCM) solvation model. Three pathways for formation of 5-OH-OG from 8-oxoG were evaluated: (A) stepwise loss of two electrons and two protons to form the quinonoid intermediate 2-amino-7,9-dihydro-purine-6,8-dione (8-oxoG(ox)) followed by hydration; (B) stepwise loss of two electrons and one proton and net addition of hydroxide, in which the key step is nucleophilic addition to the 8-oxoG radical cation; and (C) stepwise loss of one electron and one proton and addition of hydroxyl radical to the 8-oxoG radical cation. The data suggest that all three pathways are energetically feasible mechanisms for the formation of 5-OH-OG, however, Pathway A may be kinetically favored over Pathway B. Although lower in energy, Pathway C may be of limited biological significance since it depends on the local concentration of hydroxyl radical. Pathways for hydrolysis and decarboxylation of 5-OH-OG to form Gh via either a carboxylic acid or substituted carbamic acid intermediate have been evaluated with the result that cleavage of the N1-C6 bond is clearly favored over that of the C5-C6 bond. Formation of Sp from 5-OH-OG via stepwise proton transfer and acyl migration or ring opening followed by proton transfer and ring closure have also been explored and suggest that deprotonation of the hydroxyl group facilitates a 1,2 acyl shift. Results of the calculations are consistent with experimental studies showing dependence of the Gh/Sp product ratio on pH. Under neutral and basic conditions, the data predict that formation of Sp is kinetically favored over the pathways for formation of Gh. Under acidic conditions, Gh is predicted to be the kinetically favored product.  相似文献   

13.
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme-containing dioxygenases and catalyze oxidative cleavage of the pyrrole ring of L-tryptophan. On the basis of three recent crystal structures of these heme-containing dioxygenases, two new mechanistic pathways were proposed by several groups. Both pathways start with electrophilic addition of the Fe(II)-bound dioxygen concerted with proton transfer (oxygen ene-type reaction), followed by either formation of a dioxetane intermediate or Criegee-type rearrangement. However, density functional theory (DFT) calculations do not support the proposed concerted oxygen ene-type and Criegee-type rearrangement pathways. On the basis of DFT calculations, we propose a new mechanism for dioxygen activation in these heme systems. The mechanism involves (a) direct electrophilic addition of the Fe(II)-bound oxygen to the C2 or C3 position of the indole in a closed-shell singlet state or (b) direct radical addition of the Fe(III)-superoxide to the C2 position of the indole in a triplet (or open-shell singlet) state. Then, a radical-recombination or nearly barrierless charge-recombination step from the resultant diradical or zwitterionic intermediates, respectively, proceeds to afford metastable dioxetane intermediates, followed by ring-opening of the dioxetanes. Alternatively, homolytic O-O bond cleavage from the diradical intermediate followed by oxo attack and facile C2-C3 bond cleavage could compete with the dioxetane formation pathway. Effects of ionization of the imidazole and negatively charged oxyporphyrin complex on the key dioxygen activation process are also studied.  相似文献   

14.
The methanolytic cleavage of a series of O,O-dimethyl O-aryl phosphorothioates (1a?g) catalyzed by a C,N-palladacycle, (2-[N,N-dimethylamino(methyl)phenyl]-C1,N)(pyridine) palladium(II) triflate (3), at 25 °C and sspH 11.7 in methanol is reported, along with data for the methanolytic cleavage of 1a?g. The methoxide reaction gives a linear log k2?OMe vs sspKa (phenol leaving group) Br?nsted plot having a gradient of βlg = ?0.47 ± 0.03, suggesting about 34% cleavage of the P?OAr bond in the transition state. On the other hand, the 3-catalyzed cleavage of 1 gives a Br?nsted plot with a downward break at sspKa (phenol) 13, signifying a change in the rate-limiting step in the catalyzed reaction, with the two wings having βlg values of 0.0 ± 0.03 and ?1.93 ± 0.06. The rate-limiting step for good substrates with low leaving group sspKa values is proposed to be substrate/pyridine exchange on the palladacycle, while for substrates with poor leaving groups, the rate-limiting step is a chemical one with extensive cleavage of the P?OAr bond. DFT calculations support this process and also identify two intermediates, namely, one where substrate/pyridine interchange has occurred to give the palladacycle coordinated to substrate through the S═P linkage and to methoxide (6) and another where intramolecular methoxide attack has occurred on the P═S unit to give a five-coordinate phosphorane (7) doubly coordinated to Pd via the S? and through a bridging methoxide linked to P and Pd. Attempts to identify the existence of the phosphorane by 31P NMR in a d4-methanol solution containing 10 mM each of 3, trimethyl phosphorothioate (a very slow cleaving substrate), and methoxide proved unsuccessful, instead showing that the phosphorothioate was slowly converted to trimethyl phosphate, with the palladacycle decomposing to Pd0 and free pyridine. These results provide the first reported example where a palladacycle-promoted solvolysis reaction exhibits a break in the Br?nsted plot signifying at least one intermediate, while the DFT calculations provide further insight into a more complex mechanism involving two intermediates.  相似文献   

15.
In solvolysis of alkyl halides Hal-(CH(2))(n)-C(BCH(3))(11)(-) (n = 2, 5, 6, but not 3, 4, or 7) and protonation of alkenes CH(2)=CH-(CH(2))(n)(-)(2)-C(BCH(3))(11)(-) (n = 3, 6, 7, but not 4 or 5) carrying the icosahedral electrofuge -C(BCH(3))(11)(-) attached through its cage carbon atom, generation of incipient positive charge on C(alpha) (as shown in Scheme 1 in the article) leads to simultaneous cleavage of the C(beta)-C(BCH(3))(11)(-) bond. The products are a C(alpha)=C(beta) alkene and a postulated intermediate C(+)(BCH(3))(11)(-) <--> C(BCH(3))(11), trapped as the adduct Nu-C(BCH(3))(11)(-) by one of the nucleophiles (Nu(-)) present. The reaction kinetics is E1, first order in the haloalkylcarborane and zero order in [Nu(-)], and the elimination appears to be concerted, as in the usual E2 mechanism. The process is best viewed as a Grob fragmentation. The loss of the longer chains involves intrachain hydride transfer from the C(alpha)-H bond to an incipient carbocation on C(delta)(') or C(epsilon)(') via a five- or six-membered cyclic transition state, respectively. The electronic structure of the postulated intermediate is believed to lie between those of a nonclassical carbonium ylide C(+)(BCH(3))(11)(-) and a carbenoid C(BCH(3))(11) whose electronic ground state resembles the S(2) state of ordinary carbenes.  相似文献   

16.
The potential use of negative electrospray ionisation mass spectrometry (ESI-MS) in the characterisation of the three polyacetylenes common in carrots (Daucus carota) has been assessed. The MS scans have demonstrated that the polyacetylenes undergo a modest degree of in-source decomposition in the negative ionisation mode while the positive ionisation mode has shown predominantly sodiated ions and no [M+H](+) ions. Tandem mass spectrometric (MS/MS) studies have shown that the polyacetylenes follow two distinct fragmentation pathways: one that involves cleavage of the C3-C4 bond and the other with cleavage of the C7-C8 bond. The cleavage of the C7-C8 bond generated product ions m/z 105.0 for falcarinol, m/z 105/107.0 for falcarindiol, m/z 147.0/149.1 for falcarindiol-3-acetate. In addition to these product ions, the transitions m/z 243.2 → 187.1 (falcarinol), m/z 259.2 → 203.1 (falcarindiol), m/z 301.2 → 255.2/203.1 (falcarindiol-3-acetate), mostly from the C3-C4 bond cleavage, can form the basis of multiple reaction monitoring (MRM)-quantitative methods which are poorly represented in the literature. The 'MS(3) ' experimental data confirmed a less pronounced homolytic cleavage site between the C11-C12 bond in the falcarinol-type polacetylenes. The optimised liquid chromatography (LC)/MS conditions have achieved a baseline chromatographic separation of the three polyacetylenes investigated within 40 min total run-time.  相似文献   

17.
Carbonylation of the hafnocene dinitrogen complex, [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-(t)Bu)Hf](2)(μ(2), η(2), η(2)-N(2)), yields the corresponding hafnocene oxamidide compound, arising from N(2) cleavage with concomitant C-C and C-N bond formation. Monitoring the addition of 4 atm of CO by NMR spectroscopy allowed observation of an intermediate hafnocene complex with terminal and bridging isocyanates and a terminal carbonyl. (13)C labeling studies revealed that the carbonyl is the most substitutionally labile ligand in the intermediate and that N-C bond formation in the bridging isocyanate is reversible. No exchange was observed with the terminal isocyanate. Kinetic data established that the conversion of the intermediate to the hafnocene oxamidide was not appreciably inhibited by carbon monoxide and support a pathway involving rate-determining C-C coupling of the isocyanate ligands. Addition of methyl iodide to the intermediate hafnocene resulted in additional carbon-carbon bond formation arising from CO homologation following nitrogen methylation. Similar reactivity with (t)BuNCO was observed where C-C coupling occurred upon cycloaddition of the heterocumulene. By contrast, treatment of the intermediate hafnocene with CO(2) resulted in formation of a μ-oxo hafnocene with two terminal isocyanate ligands.  相似文献   

18.
Fragmentation of radical cationic peptides [R(G)(n-2)X(G)(7-n)]˙(+) and [R(G)(m-2)XG]˙(+) (X = Phe or Tyr; m = 2-5; n = 2-7) leads selectively to a(n)(+) product ions through in situ C(α)-C peptide backbone cleavage at the aromatic amino acid residues. In contrast, substituting the arginine residue with a less-basic lysine residue, forming [K(G)(n-2)X(G)(7-n)]˙(+) (X = Phe or Tyr; n = 2-7) analogs, generates abundant b-y product ions; no site-selective C(α)-C peptide bond cleavage was observed. Studying the prototypical radical cationic tripeptides [RFG]˙(+) and [KFG]˙(+) using low-energy collision-induced dissociation and density functional theory, we have examined the influence of the basicity of the N-terminal amino acid residue on the competition between the isomerization and dissociation channels, particularly the selective C(α)-C bond cleavage viaβ-hydrogen atom migration. The dissociation barriers for the formation of a(2)(+) ions from [RFG]˙(+) and [KFG]˙(+)via their β-radical isomers are comparable (33.1 and 35.0 kcal mol(-1), respectively); the dissociation barrier for the charge-induced formation of the [b(2)- H]˙(+) radical cation from [RFG]˙(+)via its α-radical isomer (39.8 kcal mol(-1)) was considerably higher than that from [KFG]˙(+) (27.2 kcal mol(-1)). Thus, the basic arginine residue sequesters the mobile proton to promote the charge-remote selective C(α)-C bond cleavage by energetically hindering the competing charge-induced pathways.  相似文献   

19.
The Lewis acid-mediated reactions of substituted cyclopropanone acetals with alkyl azides were found to strongly depend on the structure of the ketone component. When cyclopropanone acetal was treated with alkyl azides, N-substituted 2-azetidinones and ethyl carbamate products were obtained, arising from azide addition to the carbonyl, followed by ring expansion or rearrangement, respectively. When 2,2-dimethylcyclopropanone acetals were reacted with azides in the presence of BF3.OEt2, the products obtained were alpha-amino-alpha'-diazomethyl ketones, which arose from C2-C3 bond cleavage of the corresponding cyclopropanone, giving oxyallyl cations that were captured by azides. Aryl-substituted cyclopropanone acetals, when subjected to these conditions, afforded [1,2,3]oxaborazoles exclusively, which were also the result of C2-C3 bond rupture, azide capture, and then loss of nitrogen. In the reactions of n-hexyl-substituted cyclopropanone acetals with alkyl azides, a mixture of 2-azetidinones and regioisomeric [1,2,3]oxaborazoles was obtained. The reasons for the different behavior of the various systems are discussed.  相似文献   

20.
采用半经典动力学方法模拟了激光诱导下π堆积的腺嘌呤体系最低激发态的失活过程. 模拟激光脉冲仅作用于一个腺嘌呤分子. 发现随着激发态腺嘌呤分子(A)与基态腺嘌呤分子(A′)之间距离的缩短, 它们的相互作用显著增强. 分子间的相互作用导致了一条新的失活通道, 即C2原子与C2′原子靠拢成键, 形成“成键的激基复合体”的中间体. 中间体的寿命约为390 fs. C2原子的畸变和H2′原子的环面外振动导致中间体失活. 失活后C2-C2′断裂, 释放的键能转化为分子动能, 腺嘌呤分子恢复基态的平面结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号