首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— UV-induced alkaline labile viral DNA damage was detected following irradiation of adenovirus type 2 and found to be repaired following the infection of human KB cells. Human adenovirus type 2 was irradiated with various doses of UV and subsequently used to infect human KB cells in tissue culture at approximately 2 × 103 particles per cell. Before, and at various times after infection, the viral DNA was examined on alkaline sucrose gradients. Irradiated free virus DNA showed a dose dependent decrease in molecular weight compared to unirradiated virus DNA, indicating the presence of UV-induced alkaline labile lesions. Furthermore, an increase in the molecular weight of the irradiated virus DNA was found after infection indicating that alkaline labile lesions were removed from the viral DNA by a host mediated repair mechanism. After infection, the molecular weight of the irradiated virus DNA reached a value similar to that of unirradiated virus DNA for all the UV doses studied.  相似文献   

2.
Abstract Goldfish cells (RBCF-1) cultured at different cell densities were harvested and their photorepair (PR) abilities were examined in terms of survival. Photorepair ability gradually increased during the phase of logarithmic growth, reaching a maximum in cells at the confluent state. This enhancement of PR ability disappeared 12 h after replating of cells in fresh medium. A number of growth-inhibiting treatments (serum depletion, UVC, hydroxyurea [HU], change in incubation temperature) were tested for their ability to induce PR. The treatment of cells with HU and serum depletion induced PR while the other treatments did not. The increase in the ability to perform PR after treatment with HU or serum depletion returned to normal levels more rapidly than that after fluorescent light treatment.  相似文献   

3.
Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained as for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication.  相似文献   

4.
Abstract— Action spectra for photoreactivation (enhancement of colony forming ability) and photorepair (monomerization of pyrimidine dimers in DNA) were obtained for ICR 2A frog cells over the334–577 lira range. These spectra were very similar with peaks at 435 nm and little effectiveness at wavele.  相似文献   

5.
Abstract— It is known that fluorescent light illumination prior to UV irradiation (FL preillumination) of cultured fish cells increases photorepair (PR) ability. In the present study, it was found that FL preillumination also enhanced UV resistance of logarithmically growing cells in the dark. This enhancement of UV resistance differs from induction of PR because it was not suppressed by cycloheximide (CH) and it occurred immediately after FL preillumination. The effects of FL preillumination on repair of UV-induced DNA lesions in the dark were examined by an endonuclease-sensitive site assay to measure the repair of cyclobutyl pyrimidine dimers, and by enzyme-linked immunosorbent assay to quantitate the repair of (6-4) photoproducts. It was found that excision repair ability for (6-4) photoproducts in the genome overall was increased by FL preillumination. Moreover, a decrease in (6-4) photoproducts by FL illumination immediately after UV irradiation of the cells was found, the decrement being enhanced by FL preillumination with or without CH.  相似文献   

6.
A 1 m diameter water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV, in that D q, was usually larger than D o. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line used for further studies, DNA strand breaks and DNA-protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers (paper chromatography) and DNA interstrand crosslinking (alkaline elution) could not be detected. The solar fiuence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D o value and then declining; semiconservative DNA synthesis on the other hand remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis.  相似文献   

7.
We studied photoreactivation in cells carrying the multicopy ssb+ plasmid. These cells overproduce single-stranded DNA-binding protein (SSB). Overproduction of SSB enhances the capacity for photoreactivation in recA bacteria but not in the recA+ background. It is suggested that, in recA cells, SSB binds to the dimer region of DNA and that this binding stimulates the process of photoreactivation. In recA+ cells, the same stimulation might be achieved by RecA protein.  相似文献   

8.
Cultured human cells were treated with direct sunlight under conditions which minimised the hypertonic, hyperthermic and fixative effects of solar radiation. Sunlight produced similar levels of DNA strand breaks as equitoxic 254 nm UV in two fibroblast strains and a melanoma cell line, but DNA repair synthesis and inhibition of semiconservative DNA synthesis and of DNA chain elongation were significantly less for sunlight-exposed cells. DNA breaks induced by sunlight were removed more rapidly. Thus, the repair of solar damage differs considerably from 254 nm UV repair. Glass-filtered sunlight (> 320 nm) was not toxic to cells and did not induce repair synthesis but gave a low level of short-lived DNA breaks and some inhibition of DNA chain elongation; thymidine uptake was enhanced. Filtered sunlight slightly enhanced UV-induced repair synthesis and UV toxicity; photoreactivation of UV damage was not found. Attempts to transform human fibroblasts using sunlight, with or without phorbol ester, were unsuccessful.  相似文献   

9.
The enhancement of photorepair of UV-induced pyrimidine dimers by preillumination with fluorescent light, previously reported with RBCF-1 cells derived from caudal fin of a goldfish, was studied in terms of clonogenic ability and yields of dimers. In the logarithmic growth phase, the ability of photorepair increased with the time after preillumination, reached a maximum at 8 h, and gradually declined. At 8 h, the dose decrement with the photorepair-treatment for 20 min at 7.5 J/m2 UV increased by preillumination for 1 h from 1.6 to 3.1 J/m2 in terms of restoration of survival and from 1.2 to 4.3 J/m2 in terms of the disappearance of dimers. Incubation of the preilluminated cells in the medium containing cycloheximide (0.5 microgram/mL) after preillumination until UV-irradiation diminished their enhancement of photorepair. In the density-inhibited state, the ability of photorepair was higher than in the log phase, and it was hardly enhanced by preillumination.  相似文献   

10.
Abstract —Ultraviolet-radiation photolysis of thymine in the presence of cysteine gives rise to four isomeric dimers, dihydrothymine, and at least five cysteine addition products. Similar reactions occur for uracil but the products have not all been characterized in detail. The addition reactions arise from the triplet state of the pyrimidine. The initial step is production of a hydropyrimidine radical, which then reacts with cysteine to give the addition products. The triplet is quenched by cysteine with a rate constant of about 2 times 108 M-1 s-1 for thymine and 2–9 times 108 for uracil. The total yield of products gives a lower-limit estimate of the triplet yield and hence of the intersystem-crossing efficiency. These studies, combined with earlier determinations of dimer yields, show that 93% of the thymine triplets which interact with another thymine molecule are quenched without forming stable dimers. For uracil, the corresponding figure is 75%.  相似文献   

11.
12.
Abstract We have used alkaline elution to study DNA damage produced by the photosensitizer hematoporphyrin derivative (HPD) in cultured Chinese hamster cells. Dosimetry was performed by measuring fluence and calculating photon absorption by intracellular HPD. HPD photosensitization causes DNA strand breakage. These breaks are repaired by the cell, although their fractional rate of repair is smaller than that for X-ray induced strand breaks at equivalent levels of strand breakage. The combined DNA polymerase inhibitors cytosine arabinoside and hydroxyurea suppress the repair of HPD-photosensitized breaks more strongly than they suppress repair of X-ray induced breaks. Addition of novobiocin to the aforementioned inhibitors causes almost total suppression of photosensitized break repair. A nucleotide excision repair system with inhibitor susceptibility similar to that of the system which removes pyrimidine dimers thus does not act upon HPD-photosensitized damage. The repair rate and inhibitor sensitivity findings together suggest biologically important differences in the chemical nature of X-ray induced and HPD-photosensitized strand breaks. In addition to strand breaks, HPD photosensitization produces covalent DNA-protein crosslinks, some of which persist through at least 90 min incubation, but which are repaired within 180 min.  相似文献   

13.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

14.
Abstract— Continuous DNA degradation and resynthesis, without a net change in cellular DNA content, were observed in buffer-held, non-irradiated E. coli B/r. This constant DNA turnover probably involves most of the genome and reflects random sites of DNA repair due to the polA-dependent excision-resynthesis repair pathway. Under these non-growth conditions, it appears that at any given time there is a minimum of one repair site per 6.5 × 106 daltons DNA, each of which is at least 160 nucleotides long.
While the amount of DNA degradation is not influenced by prior exposure to UV radiation, the synthetic activity decreases with increasing UV fluence. We suggest that when sites of DNA turnover occur opposite to cyclobutyl dipyrimidines in UV-irradiated cells, repair of the latter damage can be prevented. This implies that both beneficial and deleterious processes take place in irradiated buffer-held cells, and that cell survival depends on the delicate balance between DNA turnover and repair of UV-damage. Based on these findings, we propose a model to explain the limited repair observed during post-irradiation liquid-holding and to account for the large difference in cell survival between irradiation at low fluence rates (fluence-rate dependent recovery) and at high fluence rates followed by liquid-holding (liquid-holding recovery).  相似文献   

15.
Abstract Fluorescence of phytochrome is found in the cells of etiolated monocotyledonous and dicotyledonous plants. The red light-absorbing form of phytochrome (Pr) fluoresces at 77 K with a yield 0.3±0.1 and maxima at 672–673 nm and 684–686 nm in the excitation and emission spectra, respectively. The emission is characterized by the sharp temperature dependence of its intensity, its high (~ 40%) polarization, and the violation of the mirror symmetry rule. Connection of the fluorescence with Pr photoreactions is followed in the interval 77–293 K. A P, photoproduct, lumi-R, is fluorescent with maxima at 696 nm and 705 nm in the excitation and emission spectra; the far-red light absorbing form of phytochrome (Pfr) is practically nonfluorescent. Three isochromic emitting Pr species are present differing in their photochemical properties: Pr1 and Pr2 which phototransform irreversibly and reversibly at T 170 K into lumi-R, and lumi-R2, respectively, and Pr3 which undergoes photoconversion only at T > 240 K. The activation energies of Pr2 and Pr3 photoreactions are evaluated to be 2.9–3.3 kJ/mol and 26 kJ/mol. Complex dynamics of changes of Pr fluorescence and of the extent of its decrease in the photoconversion Pr? Pfr in germinating pea and bean seeds suggests the existence of two Pr pools one of which is incapable of Pr? Pfr phototransformation. Thus, the developed fluorescent method of phytochrome assay and investigation in the cell revealing multiplicity of phytochrome states in vivo proves to be very sensitive (about 1 ng) and informative.  相似文献   

16.
Fluorescent light (FL) illumination of RBCF-1 cells, derived from a goldfish, prior to 254 nm UV-irradiation enhanced their ability to photorepair. The cells were illuminated with FL for 1 h (29 W/M2) and incubated for 8 h in the dark before being irradiated with 10 J/m2 UV. The surviving fraction of FL-treated cells after UV-irradiation rose about 7-fold (from 3 to 20%) by 20 min photorepair treatment with the same FL source, whereas 4-fold (from 1.6 to 6%) in the FL non-treated cells. Flow cytometric analysis showed that FL treatment did not affect the distribution of cell cycle phase at the time of UV-irradiation (8 h after FL treatment). Pyrimidine dimers induced by UV were measured by the use of UV endonuclease of Micrococcus luteus and alkaline agarose gel electrophoresis. Initial yields of dimers after exposure to 10 J/m2 UV were almost the same (about 0.11 dimer/kb) between FL treated and non-treated cells. But after 20 min photorepair treatment, about 70% of dimers were removed in the FL treated samples, while less than 20% were removed in the non FL-treated ones.  相似文献   

17.
DNA strand breaks and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutants were measured in parallel in photochemically treated (PCT) cells and compared at the same level of cell survival. Chinese hamster fibroblasts (V79 cells) were either incubated with the lipophilic dyes tetra(3—hydroxyphenyl)porphyrin (3THPP) and Photofrin II (PII), the anionic dye meso -tetra(4—sulfonatophenyl)porphine (TPPS4) or the cationic dye meso -tetra( N -methyl-4-pyridyl)porphine ( p -TMPyPH2 before light exposure. In the cells, the lipophilic dyes were localized in membranes, including the nuclear membrane, while the hydrophilic dyes were taken up primarily into spots in the cytoplasm. In addition, the hydrophilic TPPS4 was distributed homogeneously throughout the whole cytoplasm and nucleoplasm. According to the HPRT mutation test, the mutagenicity of light doses survived by 10% of the cells was a factor of six higher in the presence of 3THPP than of PII, whereas for X-rays it was a factor of three higher than for PCT with 3THPP. Light exposure in the presence of the hydrophilic dyes TPPS4 and p -TMPyPH2 was not significantly mutagenic. There was no correlation between the induced rates of HPRT mutants and of DNA strand breaks. Thus, TPPS4 was the most efficient sensitizer with regard to DNA strand breaks when compared at the same level of cell survival, followed by 3THPP, PII and p -TMPyPH2. Hence, the rate of DNA strand breaks cannot be used to predict the mutagenicity of PCT.  相似文献   

18.
Abstract— Phthalocyanines are being studied as photosensitizers for virus sterilization of red blood cells (RBC). During optimization of the reaction conditions, we observed a marked effect of the irradiance on production of RBC damage. Using a broad-band light source (600–700 nm) between 5 and 80 mW/ cm2, there was an inverse relationship between irradiance and rate of photohemolysis. This effect was observed with aluminum sulfonated phthalocyanine (AlPcSn) and cationic silicon (HOSiPc-OSi[CH3]2 [CH2]3N+[CH3]3I- phthalocyanine (Pc5) photosensitizers. The same effect occurred when the reduction of RBC negative surface charges was used as an endpoint. Under the same treatment conditions, vesicular stomatitis virus inactivation rate was unaffected by changes in the irradiance. Reduction in oxygen availability for the photochemical reaction at high irradiance could explain the effect. However, theoretical estimates suggest that oxygen depletion is minimal under our conditions. In addition, because the rate of photohemolysis at 80 mW/cm2 was not increased when irradiations were carried out under an oxygen atmosphere this seems unlikely. Likewise, formation of singlet oxygen dimoles at high irradiances does not appear to be involved because the effect was unchanged when light exposure was in D2O. While there is no ready explanation for this irradiance effect, it could be used to increase the safety margin of RBC virucidal treatment by employing exposure at high irradiance, thus minimizing the damage to RBC.  相似文献   

19.
Abstract— The irradiation of native DNA's by ultraviolet radiation of different wave lengths changes their absorption spectra. The changes are similar to those found for the formation of dimers between adjacent thymines in polynucleotide chains. The decreases in absorbance at 270 mµ produced by 280 mµ irradiation are reversed to a large extent by subsequent 239 mµ irradiation. The magnitude of the absorbance changes produced by large doses of 280 mµ correspond to the formation of dimers between approximately 50 per cent of all the TT sequences in the DNA. An incident dose of 100 erg/mm2 of 280 mµ radiation forms about one dimer per molecule of calf thymus DNA of molecular weight 6 times 106. The irradiation of heat-denatured DNA produces larger absorbance changes than are observed in native DNA. The absorbance changes in denatured DNA arise in part from a heat-reversible reaction, presumably involving cytidine, part from the formation of thymine dimers, and part from some unknown photoproducts. The reversal of thymine dimers by short wave length irradiation does not pioduce an equivalent change in the melting temperature of the DNA.  相似文献   

20.
Three principal methods have been developed for measuring femtomoles of damage in nanogram quantities of non-radioactive DNA. Lesions which can be quantified include single and double strand breaks, alkali labile sites including apurinic and apyrimidinic sites, and pyrimidine dimers. The first in vitro method measures the conversion of supercoiled DNA to relaxed or linear molecules, and can detect up to four lesions per molecule. The second in vitro method (supercoil depletion) assesses the fraction of intact linear molecules of homogeneous length, and allows detection of 8 lesions/molecule. The third method, measurement of molecular length distributions of DNAs of heterogeneous length, reveals the extent of DNA damage and repair in vivo or in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号