首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用水热法一步合成载银羟基磷灰石抗菌粉体(Ag-HA),并将其应用于抗菌陶瓷的制备。研究结果表明水热条件下HA实际载银量与AgNO3加入量存在较好的线性关系。XRD和TEM分析结果显示Ag-HA与HA具有相同的晶体结构,水热条件下Ag+取代Ca2+在HA晶体中的位置,生成AgxCa10-x(PO4)6(OH)2。Ag-HA长度随Ag+掺入量的增加而增大,当Ag+掺入量增加至1.50%时,Ag-HA由棒状生长为晶须状。选择4.50% Ag-HA作为抗菌粉体,其掺入量为9wt%时,陶瓷的抗菌率>99.9%,此时釉料中Ag3PO4含量为0.56%,低于目前研究中釉料中Ag3PO4添加量(2wt%~4wt%),不但在一定程度上解决了抗菌陶瓷产品成本较高的问题,而且满足JC/T 897-2002(抗菌陶瓷制品抗菌性能)对抗菌陶瓷抗菌性能的要求。  相似文献   

2.
本文研究了Bi2O3掺杂对Ag(Nb0.8Ta0.2)O3陶瓷的结构和介电性能的影响。X射线衍射(XRD)结果表明,Bi2O3的掺杂可以使陶瓷中Ag+被还原并析出,且银析出的量随Bi2O3掺杂量的增加而不断增加,这可能源自于Bi3+对Ag+的取代。在一定范围内增大Bi2O3掺杂量可提高Ag(Nb0.8Ta0.2)O3陶瓷的室温介电常数,降低介电损耗,并使温度系数向负值方向移动。当Bi2O3的掺杂量约为3.5wt%时,样品具有较大的介电常数(ε=672)和较小的介电损耗(tanδ=7.3×10-4)。  相似文献   

3.
采用高温固相反应合成了M5-2xSmxNax(PO4)3F(M=Ca,Sr,Ba)荧光体,研究了其在真空紫外-可见光范围的发光特性。发现在Ca5(PO4)3F中Sm3+的电荷迁移带约在191 nm,在Sr5(PO4)3F中约在199 nm,而在Ba5(PO4)3F中约在204 nm,随着被取代碱土离子半径的增大电荷迁移能量逐渐减小。比较了M5(PO4)3F (M=Ca,Sr,Ba)中Sm3+和Eu3+电荷迁移能量的关系。  相似文献   

4.
Ca5(PO4)3Cl中铕和铽间的电子转移   总被引:2,自引:0,他引:2  
本文通过对铕和铽在Ca5(PO4)3Cl基质中的发光特征的研究,发现铕和铽之间存在着电子转移现象,并对其反应机理进行了探讨。Eu3+(4f6)和Tb3+(4f8)通过电子转移使它们达到电子结构稳定的Eu2+(4f7)和Tb4+(4f<  相似文献   

5.
采用两步法合成了 sod 基系列分子筛(EMT、FAU、SOD),并通过离子交换法引入 Ag+得到载银分子筛,通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)证明离子交换前后分子筛骨架结构和晶粒尺寸没有发生明显变化;通过红外光谱(IR)、热重(TG)证明制得的载银分子筛具有良好的稳定性;对获得的载银分子筛进行了Ag+释放实验与抗菌能力测试,考察了分子筛种类和晶粒尺寸对抗菌性能的影响。结果表明具有笼状结构的FAU与EMT分子筛因可储存更多的Ag+而具有更好的抗菌性能,而具有超笼结构的 FAU 分子筛抗菌性能最优。通过对比不同晶粒尺寸载银 FAU 分子筛抗菌数据发现,晶粒尺寸为 100 nm 的载银FAU分子筛因外表面丰富的抗菌活性位点以及其内部可以储存并不断释放 Ag+而具有最优的抗菌性能和抗菌寿命。而晶粒尺寸为10 nm的载银FAU分子筛由于晶粒尺寸较小、外比表面积大、扩散路径短,Ag+的释放速率最快,抗菌效率最高。  相似文献   

6.
通过高温固相反应法制备了Ba0.85Ca0.15Ti0.90Zr0.10O3xSm3+(BCTZ∶xSm3+,x=0.0%、0.2%、0.4%、0.6%、0.8%、1.0%,物质的量分数)陶瓷,系统研究了其微观形貌、铁电性能、储能性能和光致发光性能。研究表明,Sm3+掺入后,陶瓷平均晶粒大小明显下降,致密度显著提高。所有陶瓷均表现出典型的铁电性。BCTZ∶xSm3+陶瓷放电储能密度得到了极大的提高,BCTZ∶1.0% Sm3+陶瓷放电储能密度较纯BCTZ陶瓷可提高约49.0%。此外,在408 nm光的激发下,BCTZ∶xSm3+陶瓷在596 nm左右表现出强烈的橙红色发光,且发光强度相对可调性可达449%。  相似文献   

7.
苏琼  张博文  张平  王曌  赵乐  苏小平 《化学通报》2023,86(9):1119-1125
在空气氛围下,900℃热解硼酸-三聚氰胺前驱体制备多孔氮化硼(PBN),然后通过原位沉淀法制备出Ag3PO4/PBN复合光催化剂。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光分光光度计(PL)等方法对复合物的结构和形貌进行分析。以罗丹明B(RhB)为降解底物,对光催化性能进行评价。使用异丙醇(PA)、乙二胺四乙酸二钠(EDTA-2Na)、对苯醌(BQ)和AgNO3捕获.OH、h+.O2-e-,对光催化机理进行研究。结果表明, Ag3PO4/PBN在PBN含量为70mg时催化效果最好,在可见光照射10min后,0.03g复合光催化剂对RhB溶液(50ml,30mg/L)降解率达到99.6%,具有优良的降解性能;3次重复实验后,催化剂的催化性能几乎没有发生变化,.OH、h+.O2-Ag3PO4/PBN光催化降解过程中起主要作用。  相似文献   

8.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射谱和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6发出中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。  相似文献   

9.
水热法合成了新结构类型化合物CsIn[PO3(OH)]2,并通过单晶X-射线衍射表征结构。标题化合物空间群为P1 21/c 1 (No.14),晶体学参数为:Mr=439.69,mP56,a=0.532 86(6) nm,b=0.916 53(7) nm,c=1.478 39(14) nm,β=93.849(9)°,V=0.720 4(1) nm3,Z=4,Dx=4.054 g·cm-3,μ=8.713mm-1F(000)=800,R1= 0.032 5,wR2=0.087 4。在该化合物中,2个InO6八面体和4个PO4四面体形成交连的六元环柱,并沿a轴方向形成近六方密堆积并连接成Cs+离子占据的十二元环结构隧道,六元环和十二元环连接构筑了三维网络结构。与类似化学计量比化合物Na2In2[PO3(OH)]4·H2O比较,标题化合物中十二元环的形成明显取决于隧道阳离子的大小,其拓扑构造可看作扩展的6,3-网格连接,化合物 RbIn[PO3(OH)]2与之同构。  相似文献   

10.
A new complex [Ni(en)3]4[HV12V6O42(PO4)] has been hydrothermally synthesized and characterized by X-Ray diffraction, IR and Elemental analysis. Single crystal X-ray analysis indicates that this compoud crystallizes in cubic system,space group Im 3m with a=17.4081(2)?, V=5275.38(10)?3, R=0.0420, wR=0.1055, Z=2, Dc=1.663g·cm-3, μ=2.297mm-1, F(000)=2636. The crystal structure consists of [Ni(en)3]2+ cations and {HV18O42(PO4)}8- cluster anion which construct from 18 {VO5} square pyramids. The VO5 pyramids joined each other to form a {V18O42} cage hosting a tetrahedral {PO4}3- moiety with disordered oxygen atoms. CCDC: 185574.  相似文献   

11.
MOF-5 that sometimes called IRMOF-1 has been intensively studied in recent years to develop efficient photocatalyst to degrade refractory organics and inactivate bacteria for wastewater treatment. In the present work, Ag/Ag3PO4 nanoparticles incorporated in IRMOF-1 was successfully prepared via hydrothermal approach. The antibacterial activity of synthesized materials (IRMOF-1, Ag/Ag3PO4 nanoparticles and Ag/Ag3PO4-IRMOF-1 nanocomposite was compared against two types of bacteria (Escherichia coli (E. coil) as Gram negative and Staphylococcus aureus (S. aureus) as Gram-positive bacteria). The deactivation of the bacteria by the prepared material was measured in the dark and under visible light irradiation. The antibacterial activity of synthesized samples was investigated by determining the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), growth inhibition assay and inhibition zone. The Ag/Ag3PO4-IRMOF-1 nanocomposite exhibited stronger antibacterial activities than the Ag/Ag3PO4 nanoparticles and IRMOF-1 at all tested bacteria types. Based on inhibition zone, without any light irradiation, Ag/Ag3PO4-IRMOF-1 nanocomposite showed activity toward E. coil, but in presence of light nanocomposite depicted activity toward S. aureus. The results demonstrated that antibacterial activity of all synthesized samples in the dark and light against S. aureus bacteria was more than E. coil bacteria. The antibacterial activity mechanism was due to sustained-release of silver ions in the dark and reactive oxygen species (ROS) under visible light. The bioactivity of IRMOF-1 was related to the degradation of the its structure and the release of Zn2+ ions into the culture medium that bind to the cell wall and deactivation bacteria.  相似文献   

12.
Bamboo charcoal supporting silver (BC/Ag) was prepared by activation and chemical reduction. The BC/Ag composites were characterized by silver particle size and distribution, silver ion (Ag+) release and antibacterial properties. Scanning and transmission electron microscopy (SEM and TEM) showed that the Ag particles were distributed uniformly on the BC matrix. The Ag particle size was found to be less than 150 nm based on TEM. The Ag+ release increased initially which was followed by a marginal increase between the 8th and 24th hour. Composites contained higher amounts of silver exhibited a further rise in Ag+ release from the 24‐hours of storage in water. The antibacterial effects of the BC/Ag composite powders against Pseudomonas aeruginosa and Staphylococcus aureus were assessed from the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) method, and an excellent antibacterial performance was discovered.  相似文献   

13.
An efficient, novel and convenient method for the synthesis of modified polyacrylonitrile (PAN) with antibacterial property is reported. The modification of PAN was prepared by a nitrile click chemistry reaction with sodium azide (NaN3) and silver nitrate (AgNO3) as catalyst to yield antibacterial polymeric materials with 5-vinyltetrazole units. The results showed that 5-vinyltetrazole units had coordinated with silver ion (Ag+). Through the electrostatic spinning technology, the post-modification PAN nanofibers (PAN–Ag+ nanofibers) were prepared and the fibers were tested for their antimicrobial properties by the bacterial infection experiment. Afterwards, the antibacterial and stable performance of different proportions of silver ions in PAN nanofibers has been compared. The PAN–Ag+ nanofibers are characterized for mechanical and thermomechanical properties, structural analysis, appearance characteristics, as well as the antibacterial properties. And the nanofibers exhibit marvelous chemical stability according to the thermogravimetric analysis. When at 800 °C, the PAN decomposed about 60%, while the decomposition of the PAN–Ag+s was 40%. Based on the bacterial infection experiment, PAN–Ag+ nanofibers’ antibacterial properties were stronger with the increase of silver ions, such as the number of bacteria clone was smaller and the bacteriostatic ring was larger. Hence, with combination of silver ions, the final polymers show strong antimicrobial properties.  相似文献   

14.
Decomposition of isopropanol on mixed calcium-silver apatites. A new family of apatite materials Ca10-xAgx(PO4)6(OH)2-xx were synthesized, then studied using the decomposition reaction of isopropanol. The catalytic activity of the mixed apatites was observed to correspond mainly to dehydrogenation reaction features (the formation of acetone). This phenomenon has been tentatively related to the migration of Ag+ ions towards the surface and to their reduction to metallic silver under catalytic reaction conditions. The catalytic tests for the isopropanol decomposition reaction show that silver substituted hydroxyapatites were more actives than pure hydroxyapatite.  相似文献   

15.
1. In aqueous solutions of phosphoric acid or alcali phosphates, the PO4-3can be determined by potentiometric titraition with silver nitrate PO4-3 + 3 Ag+ ár unAg3PO4↓The pH value of the solution is maintained about 9 by using borax-buffer 2 The determination of phosphate ion is also possible by precipitation of Ag3PO4 with an excess of silver nitrate, the pH of the solution is adjusted between 7 and 8 by using a new buffer mixture containing NH4+, NHXXX, and Ag+. After diluting the solution up to a known volume and filtering through dry filter paper, the excess of silver is determined by potentiometric titration with potassium bromide. This method gives very good results, it is applicable in the presence of Mg+2 and Ca+2. The presence of Fe+3 and Al+3 hinders the determination of the phosphate ion. 3. The properties of the ,,ammonium-silverdiamme” buffer system are described. This buffer contains NH4+, NH3 and Ag+ (the latter in excess with regard to NH3)  相似文献   

16.
On Lead Silver Phosphates with the Apatite Structure The hitherto unknown leas silver phosphate (Pb8Ag2PO4)6 has been prepared. It has an apatite structure with unoccupied halide positions like the analogous lead alkali compounds and forms solid solutions with Pb10(PO4)6O, Pb10(PO4)6(OH)2, and Pb10(PO4)6Cl2. At 800°C, Pb8Ag2(PO4)6 decomposes to solid Pb3(PO4)2 and PbAgPO4. (Pb, Ag) apatites have been precipitated from aqueous solutions. On the side being richer in Ag they can approximately be formulated as solid solutions between Pb8Ag2(PO4)6 and Pb10(PO4)6(OH)2. However, the i.r. spectrum reveals clear differences compared with thermal and hydrothermal preparations. The distribution of cations shows nonideal behaviour with reduced tendency for fixation of Ag+, if the content of Ag in the precipitate is high. The compound PbAgPO4 decomposes below 520°C to Pb8Ag2(PO4)6 and Ag3PO4. The arsenate apatite Pb8Ag2(AsO4)6 decomposes below 530°C to Pb3(AsO4)2 and Ag3AsO4.  相似文献   

17.
研究了LiZr2(PO4)3在水溶液中的Na/Li和Ag/Li离子交换行为.结果表明,LiZr2(PO4)3对Na+和Ag+离子均具有很高的选择性,且对Ag+的选择性高于Na+.LiZr2(PO4)3与Ag+的离子交换反应是通过形成固溶体的形式进行的,而与Na+的离子交换反应则是通过置换进行的.温度升高有利于提高LiZr2(PO4)3上Na/Li和Ag/Li的离子交换反应速度.  相似文献   

18.
X-ray diffraction analysis of [Ag3(CHF2COO)3(H2O)2] revealed that its crystals are orthorhombic: space group Cmca, a = 13.809(4) Å, b = 15.975(2) Å, c = 12.244(2) Å, Z = 8. The thermogravimetric analysis showed that under the atmosphere of N2 and at 101.3 kPa, silver difluoroacetate melts at 488 K; the thermal decomposition reaction occurs in the interval 493–548 K with the formation of Ag. Under the mass-spectral experiment conditions at 521 K, two processes occur simultaneously, namely, evaporation and decomposition. The following ions were detected in the mass-spectrum of silver difluoroacetate: Ag2L+, Ag2R+, Ag2F+, Ag2O+, Ag2 +, Ag+, LH+, RCO+, R+ (L = CHF2COO, R = CHF2).  相似文献   

19.
In this paper, the synthesis of three types of porous materials (PMs) (porous Fe3O4, MIL-101 metal-organic framework (MOF), and MCM-41 mesoporous silica) by hydrothermal method was performed. The incorporation of Ag nanoparticles (Ag NPs) was carried out after the synthesis reaction of supports in MCM-41 and MIL-101 MOF. Ag core@ porous Fe3O4 core–shell system was prepared via a one-pot hydrothermal method. Ag-MIL-101 was obtained using Urtica dioica leaf extract as the green solvent and reducing agent. The antibacterial activity of Ag-PM nanocomposites (NCs) was investigated on both Gram-negative and Gram-positive bacteria. The size of the silver NPs was determined to be 12 and 30 nm in MCM-41 and MIL-101 MOF, respectively. The diameter of Ag core in Ag@Fe3O4 shell was ~135 nm. The antibacterial activity of Ag-PMs was in the order Ag-MCM-41 > Ag-MIL-101 > Ag core@Fe3O4 shell. The loading percent of Ag NPs in MCM-41 (84%) was more than that in MIL-101 (53%) and Fe3O4 (31%). The release of Ag+ ions from Ag-MCM-41, Ag-MIL-101, and Ag@Fe3O4 NCs was 46, 2, and 1 ppm, respectively. The release of the Ag+ ions and, consequently, the antibacterial activity of NCs depend on the uniform distribution, particles size, and the absence of aggregation of Ag NPs in PMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号