首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and properties of 18 hairpin-forming bis(oligonucleotide) conjugates possessing stilbene diether linkers are reported. Conjugates possessing bis(2-hydroxyethyl)stilbene 4,4'-diether linkers form the most stable DNA hairpins reported to date. Hairpins with as few as two T:A base pairs or four noncanonical G:G base pairs are stable at room temperature. Increasing the length of the hydroxyalkyl groups results in a decrease in hairpin thermal stability. On the basis of the investigation of their circular dichroism spectra, all of the hairpins investigated adopt B-DNA structures, except for a hairpin with a short poly(G:C) stem which forms a Z-DNA structure. Both the strong fluorescence of the stilbene diether linkers and their trans-cis photoisomerization are totally quenched in hairpins possessing neighboring T:A and G:C base pairs. Quenching is attributed to an electron-transfer mechanism in which the singlet stilbene serves as an electron donor and T or C serves as an electron acceptor. In contrast, in denatured hairpins and hairpins possessing neighboring G:G base pairs the stilbene diether linkers undergo efficient photoisomerization.  相似文献   

2.
The structure and properties of oligonucleotide conjugates possessing stilbenedicarboxamide chromophores at both ends of a poly(dA):poly(dT) base-pair domain of variable length have been investigated using a combination of spectroscopic and computational methods. These conjugates form capped hairpin structures in which one stilbene serves as a hairpin linker and the other as a hydrophobic end-cap. The capping stilbene stabilizes the hairpin structures by ca. 2 kcal/mol, making possible the formation of a stable folded structure containing a single A:T base pair. Exciton coupling between the stilbene chromophores has little effect on the absorption bands of capped hairpins. However, exciton-coupled circular dichroism (EC-CD) can be observed for capped hairpins possessing as many as 11 base pairs. Both the sign and intensity of the EC-CD spectrum are sensitive to the number of base pairs separating the stilbene chromophores, as a consequence of the distance and angular dependence of exciton coupling. Calculated spectra obtained using a static vector model based on canonical B-DNA are in good agreement with the experimental spectra. Molecular dynamics simulations show that conformational fluctuations of the capped hairpins result in large deviations of the averaged spectra in both the positive and negative directions. These results demonstrate for the first time the ability of B-DNA to serve as a helical ruler for the study of electronic interactions between aligned chromophores. Furthermore, they provide important tests for atomistic theoretical models of DNA.  相似文献   

3.
A perylenediimide chromophore (P) was incorporated into DNA hairpins as a base-pair surrogate to prevent the self-aggregation of P that is typical when it is used as the hairpin linker. The photoinduced charge-transfer and spin dynamics of these hairpins were studied using femtosecond transient absorption spectroscopy and time-resolved EPR spectroscopy (TREPR). P is a photooxidant that is sufficiently powerful to quantitatively inject holes into adjacent adenine (A) and guanine (G) nucleobases. The charge-transfer dynamics observed following hole injection from P into the A-tract of the DNA hairpins is consistent with formation of a polaron involving an estimated 3-4 A bases. Trapping of the (A 3-4) (+*) polaron by a G base at the opposite end of the A-tract from P is competitive with charge recombination of the polaron and P (-*) only at short P-G distances. In a hairpin having 3 A-T base pairs between P and G ( 4G), the radical ion pair that results from trapping of the hole by G is spin-correlated and displays TREPR spectra at 295 and 85 K that are consistent with its formation from (1*)P by the radical-pair intersystem crossing mechanism. Charge recombination is spin-selective and produces (3*)P, which at 85 K exhibits a spin-polarized TREPR spectrum that is diagnostic of its origin from the spin-correlated radical ion pair. Interestingly, in a hairpin having no G bases ( 0G), TREPR spectra at 85 K revealed a spin-correlated radical pair with a dipolar interaction identical to that of 4G, implying that the A-base in the fourth A-T base pair away from the P chromophore serves as a hole trap. Our data suggest that hole injection and transport in these hairpins is completely dominated by polaron generation and movement to a trap site rather than by superexchange. On the other hand, the barrier for charge injection from G (+*) back onto the A-T base pairs is strongly activated, so charge recombination from G (or even A trap sites at 85 K) most likely proceeds by a superexchange mechanism.  相似文献   

4.
We have recently shown that hairpins containing 2',5'-linked RNA loops exhibit superior thermodynamic stability compared to native hairpins comprised of 3',5'-RNA loops [Hannoush, R. N.; Damha, M. J. J. Am. Chem. Soc. 2001, 123, 12368-12374]. A remarkable feature of the 2',5'-r(UUCG) tetraloop is that, unlike the corresponding 3',5'-linked tetraloop, its stability is virtually independent of the hairpin stem composition. Here, we determine the solution structure of unusually stable hairpins of the sequence 5'-G(1)G(2)A(3)C(4)-(U(5)U(6)C(7)G(8))-G(9)(U/T(10))C(11)C(12)-3' containing a 2',5'-linked RNA (UUCG) loop and either an RNA or a DNA stem. The 2',5'-linked RNA loop adopts a new fold that is completely different from that previously observed for the native 3',5'-linked RNA loop. The 2',5'-RNA loop is stabilized by (a). U5.G8 wobble base pairing, with both nucleotide residues in the anti-conformation, (b). extensive base stacking, and (c). sugar-base and sugar-sugar contacts, all of which contribute to the extra stability of this hairpin structure. The U5:G8 base pair stacks on top of the C4:G9 loop-closing base pair and thus appears as a continuation of the stem. The loop uracil U6 base stacks above U5 base, while the cytosine C7 base protrudes out into the solvent and does not participate in any of the stabilizing interactions. The different sugar pucker and intrinsic bonding interactions within the 2',5'-linked ribonucleotides help explain the unusual stability and conformational properties displayed by 2',5'-RNA tetraloops. These findings are relevant for the design of more effective RNA-based aptamers, ribozymes, and antisense agents and identify the 2',5'-RNA loop as a novel structural motif.  相似文献   

5.
The thermal stability and conformational dynamics of DNA hairpin and dumbbell conjugates having short A-tract base pair domains connected by tri- or hexa(ethylene glycol) linkers is reported. The formation of stable base-paired A-tract hairpins having oligo(ethylene glycol) linkers requires a minimum of four or five A-T base pairs. The formation of base-paired dumbbells having oligo(ethylene glycol) linkers by means of chemical ligation of nicked dumbbells requires a minimum of two A-T base pairs on either side of the nick. Molecular modeling indicates that the hexa(ethylene glycol) linker is sufficiently long to permit formation of strain-free loop regions and B-DNA base pair domains. In contrast, the tri(ethylene glycol) is too short to permit Watson-Crick base pairing between the bases attached to the linker. The shorter linker distorts the duplex, resulting in fluxional behavior in which the base pairs adjacent to the linker and at the open end of the hairpin dissociate on the nanosecond time scale. The loss of interstrand binding energy caused by these fluctuations leads to a difference of approximately 5 degrees C in melting temperature between EG3 and EG6 hairpins. An analysis of the fluxional behavior of the EG3 adjacent base-pair has been used to study the pathways for base flipping and base stacking, including the identification of rotated base (partially flipped) intermediates that have not been described previously for A-T base pairs.  相似文献   

6.
The present work contributes to a combined theoretical and experimental investigation on oxyclozanide. The experimental vibrational spectra were characterized by Fourier transform infrared (4000-400 cm?1), Fourier transform Raman (4000-400 cm?1), 1H and 13C NMR were recorded in Deuterated methanol, UV–Vis (200–400 nm) techniques and theoretical optimized molecular geometry, harmonic vibrational spectra, magnetic spectra, and electronic spectra was calculated by Density Functional Theory (DFT) employed with B3LYP/6-311++G(d,p) basis set and compared with experimental data. The highest occupied molecular orbital - lowest unoccupied molecular orbital (HOMO-LUMO) energy was also calculated for the titled compound. The intermolecular interactions have been addressed through Hirshfeld surface analysis. In addition, Natural bond orbital (NBO) analyses of the title compound were performed to evaluate the suitable reactivity site and chemical stabilization behavior, Mulliken atomic charge distribution, and molecular electrostatic potential energy surfaces, were calculated to get a better insight into the structure of oxyclozanide. The experimental and theoretical findings suggest an excellent correlation to confirm the structure of oxyclozanide.  相似文献   

7.
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV‐induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine–thymine double‐stranded structures (AT)n. Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time‐dependent (TD)‐DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine‐to‐thymine charge‐transfer states. Emission from such high‐energy long‐lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π–π* states (≥0.1). An increase in the size of the system quenches π–π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π–π* and charge‐transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n: high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π–π* states, giving rise to delayed fluorescence.  相似文献   

8.
In order to study the molecular recognition ability of DNA and different behavior of dyes incorporated into the base pairs, DNA molecule was assembled layer by layer via a Zr(IV) ion. The UV absorption spectra showed the uniform layer assembly of the DNA film. The fabricated DNA film was water-insoluble and maintained the native B-form structure. UV and CD measurements showed that the DNA film could intercalate ethidium bromide (EtBr).  相似文献   

9.
The dynamics of electron injection has been investigated in DNA hairpins possessing a stilbenediether electron donor linker by means of femtosecond transient absorption spectroscopy. Ultrafast electron injection and charge recombination are observed with neighboring cytosine or thymine bases; however, guanine-guanine base pairs are not reduced, permitting the investigation of the distance dependence of charge injection.  相似文献   

10.
11.
Structural features (orientation of the carboxyl group, ring puckering), electronic absorption, and circular dichroism spectra of 4-alkyl- and 4-aryl-dihydropyrimidones 1-5 are calculated by semiempirical (AM1, INDO/S), ab initio (HF/6-31G, CIS/6-31G, RPA/6-31G), and density functional theory (B3LYP/6-31G) methods. These calculations allow an assignment of the absolute configuration by comparison of simulated and experimental CD spectra. Although the ab initio methods greatly overestimate electronic transition energies, the general appearance of the experimental CD spectra is quite nicely reproduced by these calculations. Thus, comparison of experimental with calculated CD spectra is a reliable tool for the assignment of the absolute configuration. For 4-methyl derivatives 1, the first enantiopure DHPM examples with no additional aromatic substituent, the stereochemistry at C4 provided by the theoretical results is confirmed by X-ray structure determination of the diastereomeric salt 6. Additional support is the consistent HPLC elution order found for all investigated DHPMs on a cellulose-derived chiral stationary phase.  相似文献   

12.
13.
In this work, electrospray ionization mass spectrometry (ESI MS) was employed to study the interactions of cobalt(III) hexammine, Co(NH3)6(3+), with five RNA hairpins representing the 790 loop of 16S ribosomal RNA and 1920 loop of 23S ribosomal RNA. The RNAs varied in mismatch identity (G.U versus A.C) and level of base modification (pseudouridine versus uridine). Co(NH3)6(3+) binding was observed with the four RNA hairpins that contained a G.U wobble pair in the stem region. ESI MS revealed 1:1 and 1:2 complex formation with all RNAs. Weaker binding was observed with the fifth RNA hairpin that contained an A.C wobble pair in the stem region. The effects of pH on Co(NH3)6(3+) binding were also examined.  相似文献   

14.
In this study, the molecular conformation, vibrational and electronic transition analysis of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid (C7H4F2O2) were presented using experimental techniques (FT-IR, FT-Raman and UV) and quantum chemical calculations. FT-IR and FT-Raman spectra in solid state were recorded in the region 4000-400 cm(-1) and 4000-5 cm(-1), respectively. The UV absorption spectra of the compounds that dissolved in ethanol were recorded in the range of 200-800 nm. The structural properties of the molecules in the ground state were calculated using density functional theory (DFT) and second order M?ller-Plesset perturbation theory (MP2) employing 6-311++G(d,p) basis set. Optimized structure of compounds was interpreted and compared with the earlier reported experimental values. The scaled vibrational wavenumbers were compared with experimental results. The complete assignments were performed on the basis of the experimental data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as absorption wavelength, excitation energy, dipole moment and frontier molecular orbital energy, were performed by time dependent DFT (TD-DFT) approach. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.  相似文献   

15.
The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations.  相似文献   

16.
采用密度泛函理论在B3LYP/6-31+G(d)水平上研究了4种金属Mg, Ni, Cu, Zn配位的自由卟啉(FBP)及氮混杂卟啉(NECP)的几何结构及分子轨道能级. 采用含时密度泛函理论(TD-DFT)方法计算了金属与2种卟啉配位后在气体条件下的电子吸收光谱, 包括激发能、 吸收波长、 跃迁组成和振子强度.计算结果表明, 与金属配位的FBP(M-FBP)具有D4h对称性, 分子轨道能级HOMO/HOMO-1和LUMO/LUMO+1因能级相近发生简并, HOMO-LUMO轨道能级差大约3.0 eV, 在Soret带出现较强吸收峰.由于C/N原子位置的改变, 非对称性结构的M-NECP前线轨道组成发生改变, 轨道能级差(HOMO-LUMO)减小至2.6 eV左右, 且能级发生分裂, Soret带出现多个电子吸收谱峰, Q带也出现吸收峰. 本文研究了水、 氯仿和苯3种不同极性溶剂对M-FBP和M-NECP的分子轨道及电子吸收光谱的影响, 结果表明, 随溶剂极性减弱金属配合物的电子吸收光谱发生红移, 并且吸收峰强度增强.  相似文献   

17.
Excited states in double-stranded oligonucleotides containing G.C base pairs were studied by femtosecond transient absorption spectroscopy. Relaxation to the electronic ground state occurs about 10 times more slowly in the duplexes and hairpins studied on average than in the individual mononucleotides of G and C. Detection of long-lived excited states in G.C oligonucleotides complements the earlier observation of slow ground-state recovery in A.T DNA, showing that excited states with picosecond lifetimes are formed in DNAs containing either kind of base pair. The results show further that Watson-Crick G.C base pairs in these base-paired and base-stacked duplexes do not enable subpicosecond relaxation to the electronic ground state. A model is proposed in which fluorescent exciton states decay rapidly and irreversibly to dark exciplex states. This model explains the seemingly contradictory observations of femtosecond fluorescence and slower, picosecond recovery of the ground-state population.  相似文献   

18.
Four-stranded nucleic acid structures are central to many processes in biology and in supramolecular chemistry. It has been shown recently that four-stranded DNA structures are not only limited to the classical guanine quadruplex but also can be formed by tetrads resulting from the association of Watson-Crick base pairs. Such an association may occur through the minor or the major groove side of the base pairs. Structures stabilized by minor groove tetrads present distinctive features, clearly different from the canonical guanine quadruplex, making these quadruplexes a unique structural motif. Within our efforts to study the sequence requirements for the formation of this unusual DNA motif, we have determined the solution structure of the cyclic oligonucleotide dpCCGTCCGT by two-dimensional NMR spectroscopy and restrained molecular dynamics. This molecule self-associates, forming a symmetric dimer stabilized by two G:C:G:C tetrads with intermolecular G-C base pairs. Interestingly, although the overall three-dimensional structure is similar to that found in other cyclic and linear oligonucleotides of related sequences, the tetrads that stabilize the structure of dpCCGTCCGT are different to other minor groove G:C:G:C tetrads found earlier. Whereas in previous cases the G-C base pairs aligned directly, in this new tetrad the relative position of the two base pairs is slipped along the axis defined by the base pairs. This is the first time that a quadruplex structure entirely stabilized by slipped minor groove G:C:G:C tetrads is observed in solution or in the solid state. However, an analogous arrangement of G-C base pairs occurs between the terminal residues of contiguous duplexes in some DNA crystals. This structural polymorphism between minor groove GC tetrads may be important in stabilization of higher order DNA structures.  相似文献   

19.
Synthetic conjugates possessing bis(2-hydroxyethyl)stilbene-4,4'-diether linkers (Sd2) form the most stable DNA hairpins reported to date. Factors that affect stability are length and flexibility of the linkers and pi-stacking of the stilbene moiety on the adjacent base pair. The crystal structure of the hairpin d(GT(4)G)-Sd2-d(CA(4)C) was determined at 1.5 A resolution. The conformations of the two molecules in the asymmetric unit differ both in the linker and the stem portions. One of them shows a planar stilbene that is stacked on the adjacent G:C base pair. The other displays considerable rotation between the phenyl rings and an unprecedented edge-to-face orientation of stilbene and base pair. The observation of considerable variations in the conformation of the Sd moiety in the crystal structure allows us to exclude restriction of motion as the reason for the absence of Sd photoisomerization in the hairpins. Conformational differences in the stem portion of the two hairpin molecules go along with different Mg(2+) binding modes. Most remarkable among them is the sequence-specific coordination of a metal ion in the narrow A-tract minor groove. The crystal structure provides unequivocal evidence that a fully hydrated Mg(2+) ion can penetrate the narrow A-tract minor groove, causing the groove to further contract. Overall, the structural data provide a better understanding of the origins of hairpin stability and their photochemical behavior in solution.  相似文献   

20.
In this contribution we report optical spectroscopic data on a series of designed beta hairpins previously shown by NMR to contain a substantial population of beta-sheet structure. These models contain a designed hydrophobic cluster and a (D)Pro-Gly sequence to promote formation of a turn geometry. FTIR, electronic and vibrational CD (ECD and VCD) spectra for these small peptides are comparable to expected bandshapes for peptides of high beta-sheet content. The (D)Pro-Gly sequence provides a better turn motif than Asn-Gly as measured by its beta-sheet spectral characteristics. IR and VCD spectra are in qualitative agreement with theoretical simulations based on transfer of parameters from ab initio quantum mechanical force field and intensity computations for the turn and strands. These calculations provide assignments for some distinguishing modes in both IR and VCD spectra. Increased sheet structure can be induced in these hairpins by use of mixed solvent conditions. Thermal denaturation studies reveal that these hairpins undergo very broad unfolding transitions. Guanidine hydrochloride unfolding transitions for the selected hairpin models are similarly broad. However, the "end-states" of temperature and chaotropic denaturation are spectroscopically differentiable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号