首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical reactivity of fluorine molecule (F2)-germanium (Ge) surface and dissociation of fluorine (F)-Ge bonding have been simulated by semi-empirical molecular orbital method theoretically, which shows that F on Ge surface is more stable compared to hydrogen. Ge MIS (metal insulator semiconductor) capacitor has been fabricated by using F2-treated Ge(1 0 0) substrate and HfO2 film deposited by photo-assisted MOCVD. Interface state density observed as a hump in the C-V curve of HfO2/Ge gate stack and its C-V hysteresis were decreased by F2-treatment of Ge surface. XPS (X-ray photoelectron spectroscopy) depth profiling reveals that interfacial layer between HfO2 and Ge is sub-oxide layer (GeOx or HfGeOx), which is believed to be origin of interface state density.F was incorporated into interfacial layer easily by using F2-treated Ge substrate. These results suggest that interface defect of HfO2/Ge gate stack structure could be passivated by F effectively.  相似文献   

2.
HfO2-based metal-oxide semiconductor (MOS) capacitors were irradiated with high-energy ion beam to study the irradiation effects in these films. HfO2 thin films deposited by radio frequency (rf)-sputtering were irradiated with 80 MeV O6+ ions. The samples were irradiated and characterized at room temperature. Devices were characterized via 1 MHz capacitance–voltage (C?V) measurements using the midgap method. The irradiation induced dispersion in accumulation and depletion regions with increasing fluence is observed. After irradiation, the midgap voltage shift (Δ V mg) of?0.61 to?1.92 V, flat band voltage shift (Δ V fb) of?0.48 to?2.88 V and threshold voltage shift (Δ V th) of?0.966 to?1.96 V were observed. The change in interface trap charge and oxide trap charge densities after 80 MeV O6+ ions irradiation with fluences were determined from the midgap to flat band stretch out of C?V curves. The results are reported and explained in terms of changes in microstructure and dielectric properties of the HfO2 thin films after irradiation.  相似文献   

3.
Amorphous Si:C:O:H films were fabricated at low temperature by C2F6 and O2/C2F6 plasma treating silicone oil liquid. The a-Si:C:O:H films fabricated by C2F6 plasma treatment exhibited white photoluminescence at room temperature, while that by O2/C2F6 plasma treatment exhibited blue photoluminescence. Fourier transformed infrared spectroscopy and Raman spectroscopy studies showed that the sp3 and sp2 hybridized carbons, SiC bond, SiO bond and carbon-related defects in a-Si:C:O:H films correlated with photoluminescence. It is suggested that the blue emission at 469 nm was related to the sp3 and sp2 hybridized carbons, SiC bond, carbon dangling bonds as well as SiO short chains and small clusters, while the light emitting at 554 nm was related to the carbon-related defects.  相似文献   

4.
IR laser chemistry of CHF3 is investigated in both neat form and in the presence of Cl2 for carbon-13 enrichment. Infrared multiple-photon dissociation of CHF3 is an order of magnitude more efficient in the scavenged system compared to the neat case. The photolysis of CHF3/Cl2 mixture results in two products, viz., CF2Cl2 and C2F4Cl2 but with different enrichment factors. The parametric studies show that C2F4Cl2 arises due to MPD of CF2Cl2 in secondary photolysis.  相似文献   

5.
The thermal stability of pure HfO2 thin films is not high enough to withstand thermal processes, such as S/D activation or post-metal annealing, in modern industrial CMOS production. In addition, plasma nitridation technology has been employed for increasing the dielectric constant of silicon dioxide and preventing boron penetration. In this experiment, atomic layer deposition (ALD) technology was used to deposit HfO2 thin films and inductively coupled plasma (ICP) technology was used to perform plasma nitridation process. The C-V and J-V characteristics of the nitrided samples were observed to estimate the effect of the nitridation process. According to this study, plasma nitridation process would be an effective method to improve the thermal stability of HfO2 thin films.  相似文献   

6.
M. Liu  G. He  Q. Fang  G.H. Li 《Applied Surface Science》2006,252(18):6206-6211
High-k HfO2-Al2O3 composite gate dielectric thin films on Si(1 0 0) have been deposited by means of magnetron sputtering. The microstructure and interfacial characteristics of the HfO2-Al2O3 films have been investigated by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE). Analysis by XRD has confirmed that an amorphous structure of the HfO2-Al2O3 composite films is maintained up to an annealing temperature of 800 °C, which is much higher than that of pure HfO2 thin films. FTIR characterization indicates that the growth of the interfacial SiO2 layer is effectively suppressed when the annealing temperature is as low as 800 °C, which is also confirmed by spectroscopy ellipsometry measurement. These results clearly show that the crystallization temperature of the nanolaminate HfO2-Al2O3 composite films has been increased compared to pure HfO2 films. Al2O3 as a passivation barrier for HfO2 high-k dielectrics prevents oxygen diffusion and the interfacial layer growth effectively.  相似文献   

7.
Compounds containing bismuth, iron and oxygen (BFO) can result in materials with important magnetic and electrical properties for high-technology applications. We plan to prepare such compounds using the simultaneous ablation of bismuth and iron oxide targets. For that reason in the first part of this work we study the plasmas and the materials produced by ablation of bismuth or Fe2O3 targets, and then the two plasmas are combined in order to deposit the BFO compounds. The individual plasmas were characterized using a Langmuir probe, in order to measure the mean kinetic ion energy (E p) and plasma density (N p). Bismuth and magnetite-Fe3O4 thin films were obtained in high vacuum (2.7×10?4 Pa). Meanwhile for the deposition of α-Fe2O3 (hematite) or amorphous bismuth oxide thin films a reactive atmosphere (Ar/O2=80/20) was used. All depositions were made at room temperature. The bismuth thin films crystallized in the rhombohedral metallic system with preferential orientations that depended on the Bi-ion energy used. Bismuth oxide phases were only obtained after annealing of the Bi thin films at different temperatures. Iron oxide thin films reproducing the target stoichiometry were obtained at a certain value of iron-ion energy. Preliminary structural results of the BFO thin films obtained by the combination of the individual plasmas are presented.  相似文献   

8.
Ionization cross sections of fragment ions of CF4, C2F6, C3F8, n-C4F10, C2F4, 1-C4F8, SiF4, COF2. CHF3 were determined in dependence on electron energy up to 125 eV by means of a quadrupol mass spectrometer. Tails at the low energy part of the characteristics are interpreted as a result of kinetic energy depending on molecular weight of fragments. Parent ions are only detected for chemically unsaturated compounds showing characteristic curves of ionization efficiency. Total cross sections obey the additive rule.  相似文献   

9.
叶超  宁兆元  程珊华 《物理学报》2001,50(10):2017-2022
用紫外可见光透射光谱(UV-VIS)并结合键结构的X射线光电子能谱(XPS)和红外谱(FTIR)分析,研究了电子回旋共振等离子体增强化学气相沉积法制备的氟化非晶碳薄膜的光吸收和光学带隙性质.在微波功率为140—700W、源气体CHF3∶C6H6比例为1∶1—10∶1条件下沉积的薄膜,光学带隙在1.76—2.85eV之间.薄膜中氟的引入对吸收边和光学带隙产生较大的影响,吸收边随氟含量的提高而增大,光学带隙则主要取决于CF键的含量,是由于强电负 关键词: 氟化非晶碳薄膜 光吸收与光学带隙 电子回旋共振等离子体  相似文献   

10.
We investigate the intermediate gas phase in the CHFs 13.56 MHz/2 MHz dual-frequency capacitively couple plasma (CCP) for the SiCOH low dielectric constant (low-k) film etching, and the effect of 2MHz power on radicals concentration. The major dissociation reactions of CHF3 in 13.56MHz CCP are the low dissociation bond energy reactions, which lead to the low F and high CF2 concentrations. The addition of 2MHz power can raise the probability of high dissociation bond energy reactions and lead to the increase of F concentration while keeping the CF2 concentration almost a constant, which is of advantage to the SiCOH low-k films etching. The radical spatial uniformity is dependent on the power coupling of two sources. The increase of 2 MHz power leads to a poor uniformity, however, the uniformity can be improved by increasing 13.56 MHz power.  相似文献   

11.
We investigated photoluminescence characteristics of silicone oils treated by C2F6 and CHF3 plasma. The silicone oil treated by the C2F6 plasma emitted a white light mainly composed of 415 nm, 469 nm, and 554 nm emissions, while that treated by the CHF3 plasma emitted a pink light (415 nm). Fourier transformed infrared spectroscopy and Raman spectroscopy studies showed that the photoluminescence was correlated with the Si-C bond, the carbon-related defects and the oxygen vacancies. It was suggested that the light emitting at 554 nm was related to the Si-C bond and the carbon-related defects, while the pink emission at 415 nm was related to the oxygen vacancies.  相似文献   

12.
Al2O3 incorporated HfO2 films grown by atomic layer deposition (ALD) were investigated by high-resolution X-ray photoelectron spectroscopy (HRXPS). The core level energy state of a 15 Å thick film showed a shift to higher binding energy, as the result of a silicate formation and Al2O3 incorporation. The incorporation of Al2O3 into the HfO2 film had no effect on silicate formation at the interface between the film and Si, while the ionic bonding characteristics and hybridization effects were enhanced compared to a pure HfO2 film. The dissociation of the film in an ultrahigh vacuum (UHV) is effectively suppressed compared to a pure HfO2 film, indicating an enhanced thermal stability of Hf-Al-O. Any dissociated Al2O3 on the film surface was completely removed into the vacuum by vacuum annealing treatment over 850 °C, while HfO2 contributed to Hf silicide formation on the film surface.  相似文献   

13.
60 MHz pulsed radio frequency (rf) source power and 2 MHz continuous wave rf bias power, were used for SiO2 etching masked with an amorphous carbon layer (ACL) in an Ar/C4F8/O2 gas mixture, and the effects of the frequency and duty ratio of the 60 MHz pulse rf power on the SiO2 etch characteristics were investigated. With decreasing duty ratio of the 60 MHz pulse rf power, not only the etch rate of SiO2 but also the etch rate of ACL was decreased, however, the etch selectivity of SiO2 over ACL was improved with decreasing the duty ratio. On the other hand, when the pulse frequency was varied at a constant duty ratio, no significant change in the etch rate and etch selectivity of both materials could be observed. The variation of the etch characteristics was believed to be related to the change in the gas dissociation characteristics caused by the change in the average electron temperature for different pulsing conditions. The improvement in the etch selectivity with the decrease of duty ratio, therefore, was related to the decreased gas dissociation of C4F8 by the decrease of average electron temperature and, which resulted in a change in composition of the fluorocarbon polymer on the etched materials surface from C–C rich to CF2 rich. With decreasing the duty ratio, not only the etch selectivity but also the improvement in the SiO2 etch profile could be observed.  相似文献   

14.
This paper presents the decomposition by-products of trifluro-iodo-methane and their relative proportions in the gas phase under the occurrence of partial discharge. The experiment was performed in the presence of water vapor from 250 to 400 ppm under a non-uniform electric field configuration. The experimental results reveal that the by-products of C2F6, C2F4, C2F5I with the amount of 1300, 200, and 55 (CH3I) ppm, respectively, were produced for a cumulative charge of 161 mC. Other by-products, such as C3F8, CHF3, C3F6 CH3I were obtained at less than 30 ppm C2F6 was the dominant gas by-product of trifluro-iodo-methane suffering partial discharge.  相似文献   

15.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

16.
HfO2 films are deposited by atomic layer deposition (ALD) using tetrakis ethylmethylamino hafnium (TEMAH) as the hafnium precursor, while O3 or H2O is used as the oxygen precursor. After annealing at 500℃ in nitrogen, the thickness of Ge oxide's interfacial layer decreases, and the presence of GeO is observed at the H2O-based HfO2 interface due to GeO volatilization, while it is not observed for the O3-based HfO2. The difference is attributed to the residue hydroxyl groups or H2O molecules in H2O-based HfO2 hydrolyzing GeO2 and forming GeO, whereas GeO is only formed by the typical reaction mechanism between GeO2 and the Ge substrate for O3-based HfO2 after annealing. The volatilization of GeO deteriorates the characteristics of the high-κ films after annealing, which has effects on the variation of valence band offset and the C–V characteristics of HfO2/Ge after annealing. The results are confirmed by X-ray photoelectron spectroscopy (XPS) and electrical measurements.  相似文献   

17.
Results obtained from CASSCF–MRMP2 calculations are used to explain the carbene products observed under matrix conditions for the interactions Fe(5D) + CH4nFn (n = 2–4) in terms of two sequential reactions involving the radical species ·FeF + CH4nFn1. For the CH2F2 and CHF3 molecules, the first reaction leads to the radical fragments ·FeF + CH2F (or ·CHF2). As these species remain trapped in the matrix, they can recombine themselves to form the inserted complex CH2F–Fe–F (or CHF2–Fe–F). The carbene H2C = FeF2 (or HFC = FeF2) is reached from the inserted structure by α-migration of an additional fluorine atom to the metal centre. The rebounding reactions can take place along both the quintuplet and triplet asymptotes varying only in the spin of the non-metal fragment. This model explains the triplet compound H2C=FeF2 detected for the interaction Fe + CH2F2 and allows theoretically assigning as quintuplet the complex HFC=FeF2 observed for the reaction Fe + CHF3.  相似文献   

18.
The physical and chemical properties of the HfO2/SiO2/Si stack have been analyzed using cross-section HR TEM, XPS, IR-spectroscopy and ellipsometry. HfO2 films were deposited by the MO CVD method using as precursors the tetrakis 2,2,6,6 tetramethyl-3,5 heptanedionate hafnium—Hf(dpm)4 and dicyclopentadienil-hafnium-bis-diethylamide—Сp2Hf(N(C2H5)2)2.The amorphous interface layer (IL) between HfO2 and silicon native oxide has been observed by the HRTEM method. The interface layer comprises hafnium silicate with a smooth varying of chemical composition through the IL thickness. The interface layer formation occurs both during HfO2 synthesis, and at the annealing of the HfO2/SiO2/Si stack. It was concluded from the XPS, and the IR-spectroscopy that the hafnium silicate formation occurs via a solid-state reaction at the HfO2/SiO2 interface, and its chemical structure depends on the thickness of the SiO2 underlayer.  相似文献   

19.
Transparent SiO2 thin films were selectively fabricated on Si wafer by 157 nm F2 laser in N2/O2 gas atmosphere. The F2 laser photochemically produced active O(1D) atoms from O2 molecules in the gas atmosphere; strong oxidation reaction could be induced to fabricate SiO2 thin films only on the irradiated areas of Si wafer. The oxidation reaction was sensitive to the single pulse fluence of F2 laser. The irradiated areas were swelled and the height was approximately 500-1000 nm at the 205-mJ/cm2 single pulse fluence for 60 min laser irradiation. The fabricated thin films were analytically identified to be SiO2 by the Fourier-transform IR spectroscopy. The SiO2 thin films could be also removed by subsequent chemical etching to fabricate micro-holes 50 nm in depth on Si wafer for microfabrication.  相似文献   

20.
The effects of microstructure and surface terminal bonds of SiO2 aerogel films on dry etching were investigated using Ar, SF6, and C2F6 plasma gases. With Ar plasma etching, physical effect of ion bombardment on porous film was found. In residue-free SF6 plasma etching, reactive etchant transport and high-mass ion bombardment were observed. With C2F6 plasma etching, fluorocarbon residue layer was revealed to maintain surface morphology as acting a barrier to radical transport and ion bombardment. An etching of 450°C-annealed SiO2 aerogel showed that a dense surface induced the decrease in reaction area, inhibition of etchant transport, and then uniform etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号