首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The successful application of functional nanostructures, fabricated via focused electron-beam-induced deposition (FEBID), is known to depend crucially on its chemistry as FEBID tends to strong incorporation of carbon. Hence, it is essential to understand the underlying mechanisms which finally determine the elemental composition after fabrication. In this study we focus on these processes from a fundamental point of view by means of (1) varying electron emission on the deposit surface; and (2) changing replenishment mechanism, both driven by the growing deposit itself. First, we revisit previous results concerning chemical variations in nanopillars (with a quasi-1D footprint) depending on the process parameters. In a second step we expand the investigations to deposits with a 3D footprint which are more relevant in the context of applications. Then, we demonstrate how technical setups and directional gas fluxes influence final chemistries. Finally, we put the findings in a bigger context with respect to functionalities which demonstrates the crucial importance of carefully set up fabrication processes to achieve controllable, predictable and reproducible chemistries for FEBID deposits as a key element for industrially oriented applications.  相似文献   

2.
One-dimensional (1D) tungsten oxide nanostructures show great potential for applications in the areas of batteries, photoelectrochemical water-splitting, electrochromic devices, catalysts and gas sensors. 1D tungsten oxide nanostructures are currently synthesized by physical or chemical vapor deposition, which are limited by low temperatures, the need for vacuum conditions, frequently expensive catalysts, and difficulty in scaling up for mass-production. These limitations, however, can be overcome by flame synthesis. Here, using a co-flow multi-element diffusion burner, we demonstrate the atmospheric, catalyst-free, rapid, mild and scalable flame synthesis of diverse, quasi-aligned, large density, and crystalline tungsten oxide nanostructures on a variety of substrates. Specifically, under fuel-rich conditions, monoclinic 1D W18O49 nanowires and nanotubes were grown on tungsten, iron, steel and fluorinated tin oxide (FTO) substrates, with controlled diameters ranging from 10 to 400 nm and axial growth rates ranging from 2 to 60 μm/h. Monoclinic 1D WO3 nanowires and nanotubes were grown, instead, on silicon and silicon dioxide substrates. Under fuel-lean conditions, diverse WO3 nanostructures, including monoclinic 1D nanowires, cubic 2D nanobelts and monoclinic 3D nanocones were grown on tungsten and FTO substrates. The success of this versatile flame synthesis method is attributed to the large tunability of several synthesis parameters, including the flame stoichiometry, the tungsten source and growth substrate temperatures, the tungsten oxide vapor concentration, and the material of the growth substrate. This flame synthesis method can be extended to synthesize other 1D transition metal oxides as well, enabling many large-scale electronic and energy conversion applications.  相似文献   

3.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

4.
Yu Zhang 《中国物理 B》2021,30(11):118504-118504
Magnetic two-dimensional (2D) van der Waals (vdWs) materials and their heterostructures attract increasing attention in the spintronics community due to their various degrees of freedom such as spin, charge, and energy valley, which may stimulate potential applications in the field of low-power and high-speed spintronic devices in the future. This review begins with introducing the long-range magnetic order in 2D vdWs materials and the recent progress of tunning their properties by electrostatic doping and stress. Next, the proximity-effect, current-induced magnetization switching, and the related spintronic devices (such as magnetic tunnel junctions and spin valves) based on magnetic 2D vdWs materials are presented. Finally, the development trend of magnetic 2D vdWs materials is discussed. This review provides comprehensive understandings for the development of novel spintronic applications based on magnetic 2D vdWs materials.  相似文献   

5.
ZnO and ZnS, well-known direct bandgap II–VI semiconductors, are promising materials for photonic, optical, and electronic devices. Nanostructured materials have lent a leading edge to the next generation technology due to their distinguished performance and efficiency for device fabrication. As two of the most suitable materials with size- and dimensionality-dependent functional properties, wide bandgap semiconducting ZnO and ZnS nanostructures have attracted particular attention in recent years. For example, both materials have been assembled into nanometer-scale visible-light-blind ultraviolet (UV) light sensors with high sensitivity and selectivity, in addition to other applications such as field emitters and lasers. Their high-performance characteristics are particularly due to the high surface-to-volume ratios (SVR) and rationally designed surfaces. This article provides a comprehensive review of the state-of-the-art research activities in ZnO and ZnS nanostructures, including their syntheses and potential applications, with an emphasis on one-dimensional (1D) ZnO and ZnS nanostructure-based UV light emissions, lasers, and sensors. We begin with a survey of nanostructures, fundamental properties of ZnO and ZnS, and UV radiation–based applications. This is followed by detailed discussions on the recent progress of their synthesis, UV light emissions, lasers, and sensors. Additionally, developments of ZnS/ZnO composite nanostructures, including core/shell and heterostructures, are discussed and their novel optical properties are reviewed. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of ZnO and ZnS nanostructures on the current and future applications for UV light–based lasers and sensors.  相似文献   

6.
This work reviews our recent works about the density functional theory(DFT) calculational aspects of electronic properties in silicene-based nanostructures with the modulation of external fields, such as electric field, strain, etc. For the two-dimensional(2D) silicene-based nonostructures, the magnetic moment of Fe-doped silicene shows a sharp jump at a threshold electric field, which indicates a good switching effect, implying potential applications as a magnetoelectric(ME) diode. With the electric field, the good controllability and sharp switching of the magnetism may offer a potential applications in the ME devices. For the one-dimensional(1D) nanostructures, the silicene nanoribbons with sawtooth edges(SSi NRs) are more stable than the zigzag silicene nanoribbons(ZSiNRs) and show spin-semiconducting features. Under external electric field or uniaxial compressive strain, the gapless spin-semiconductors are gained, which is significant in designing qubits for quantum computing in spintronics. The superlattice structures of silicene-based armchair nanoribbons(ASiSLs) is another example for 1D silicene nanostructures. The band structures of ASi SLs can be modulated by the size and strain of the superlattices. With the stain increased, the related energy gaps of ASi SLs will change, which are significantly different with that of the constituent nanoribbons. The results suggest potential applications in designing quantum wells.  相似文献   

7.
Zhongchong Lin 《中国物理 B》2022,31(8):87506-087506
As the family of magnetic materials is rapidly growing, two-dimensional (2D) van der Waals (vdW) magnets have attracted increasing attention as a platform to explore fundamental physical problems of magnetism and their potential applications. This paper reviews the recent progress on emergent vdW magnetic compounds and their potential applications in devices. First, we summarize the current vdW magnetic materials and their synthetic methods. Then, we focus on their structure and the modulation of magnetic properties by analyzing the representative vdW magnetic materials with different magnetic structures. In addition, we pay attention to the heterostructures of vdW magnetic materials, which are expected to produce revolutionary applications of magnetism-related devices. To motivate the researchers in this area, we finally provide the challenges and outlook on 2D vdW magnetism.  相似文献   

8.
In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state.  相似文献   

9.
Revealing the physical nature of vortex wall(VW) behavior in magnetic nanostructures has been of great importance for future device concepts. Here we introduce the superior properties of VW in a notched FeNi nanowire under the action of an electronic current. The pinning-dependent VW propagation is demonstrated by a successive in-field magnetic force microscopy, an anisotropic magnetoresistance measurement, as well as micromagnetics.Based on the developed method, the propagation of VW can be effectively captured by monitoring the change of magnetoresistance in the FeNi nanowire, which sheds light on the development of future spin-based devices.  相似文献   

10.
Zinc sulfide (ZnS) nanostructures have attracted increasing attention due to their potential application in both conditional optical devices and new generation of nano-electronics and nano-optoelectronics because of their special structure-related chemical and physical properties. In this article, beginning with the synthesis of ZnS nanostructures with various original morphologies, we summarize the state-of-art research progresses on ZnS nanostructures. This is followed by the recent progresses on the improvement of their properties, especially the novel potential applications. We highlight the recent achievements on photoluminescence, photocatalysis, light-emitting diodes (LEDs), field-effect transistors (FET), sensors, dye-sensitized solar cells, and field emission (FE) based on ZnS nanostructures. Finally, we present an outlook on the future development of ZnS nanostructures.  相似文献   

11.
王建禄  胡伟达 《中国物理 B》2017,26(3):37106-037106
Two-dimensional(2D) materials, such as graphene and Mo S2 related transition metal dichalcogenides(TMDC), have attracted much attention for their potential applications. Ferroelectrics, one of the special and traditional dielectric materials,possess a spontaneous electric polarization that can be reversed by the application of an external electric field. In recent years, a new type of device, combining 2D materials with ferroelectrics, has been fabricated. Many novel devices have been fabricated, such as low power consumption memory devices, highly sensitive photo-transistors, etc. using this technique of hybrid systems incorporating ferroelectrics and 2D materials. This paper reviews two types of devices based on field effect transistor(FET) structures with ferroelectric gate dielectric construction(termed Fe FET). One type of device is for logic applications, such as a graphene and TMDC Fe FET for fabricating memory units. Another device is for optoelectric applications, such as high performance phototransistors using a graphene p-n junction. Finally, we discuss the prospects for future applications of 2D material Fe FET.  相似文献   

12.
In order to realize spintronic devices in narrow-gap semiconductors, we have carried out studies on the well-known InAs/GaSb-based materials and structures. As a key component to such devices, GaSb/Mn digital alloys were successfully grown by molecular beam epitaxy. Good crystal quality was observed with transmission electron microscopy showing well-resolved Mn-containing layers and no evidence of 3D MnSb precipitates in as-grown samples. Ferromagnetism was observed in GaSb/Mn digital alloys with temperature-dependent hysteresis loops in magnetization up to 400 K (limited by the experimental setup). Magnetotransport studies were also carried out, both in the conventional Hall-bar configuration, and on gated Hall-bar structures. Both anomalous Hall effect and tunable ferromagnetism with applied gate bias were investigated. Annealing studies of the digital alloys reveal evidence of migration of Mn atoms at elevated temperatures.  相似文献   

13.
In the last decade, hollow polyaniline nanostructures such as nanocapsules and nanotubes have attracted increasing attention due to their potential applications in electrical and optoelectronic nanodevices, sensors, supercapacitors, energy storage devices, and else where. Many strategies have been developed for their preparation, such as hard template methods with physical templates, soft template methods with chemical templates, and template-free methods. The present status and future directions of hollow Polyaniline nanostructures using these pathways are described in this review. Their properties and applications are also addressed. Finally, the review examines developing perspectives for the future application of nanostructures.  相似文献   

14.
Progress in nanofabrication technology has led to the development of nanostructure materials with characteristic physical properties and potential applications in micro- and optoelectronic devices. To evaluate such nanostructures, different spectroscopic techniques have been developed that can provide a nanometer-scale lateral resolution. The International Workshop on Nanoscale Spectroscopy (NSS) is a biennial meeting series to share information on the latest research advances of science and technology, which include various kinds of nanoscale spectroscopies; electronic, optical, magnetic, mechanical, and transport properties of nanoscale systems; nanoscale devices; and nanomanipulation.  相似文献   

15.
《中国物理 B》2021,30(9):97601-097601
Two-dimensional(2 D) magnetic materials have aroused tremendous interest due to the 2 D confinement of magnetism and potential applications in spintronic and valleytronic devices. However, most of the currently 2 D magnetic materials are achieved by the exfoliation from their bulks, of which the thickness and domain size are difficult to control, limiting the practical device applications. Here, we demonstrate the realization of thickness-tunable rhombohedral Cr_2Se_3 nanosheets on different substrates via the chemical vapor deposition route. The magnetic transition temperature at about 75 K is observed. Furthermore, van der Waals heterostructures consisting of Cr_2Se_3 nanosheets and monolayer WS_2 are constructed.We observe the magnetic proximity effect in the heterostructures, which manifests the manipulation of the valley polarization in monolayer WS_2. Our work contributes to the vapor growth and applications of 2 D magnetic materials.  相似文献   

16.
Present information technologies use semiconductor devices and magnetic/optical discs, however, they are all foreseen to face fundamental limitations within a decade. Therefore, superseding devices are required for the next paradigm of high performance information technologies. This paper describes prospects for single molecule devices suitable for future information processing technologies. Possible four milestones for realizing the Peta (P: 1015)/Exa (E: 1018)––floating operations per second (FLOPS) personal molecular supercomputer are proposed. Current status and necessary technologies of the first milestone are described, and necessary technologies for the next three milestones are also discussed.  相似文献   

17.
Surface-enhanced Raman spectroscopy(SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate.In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional(3D)noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of3 D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed.  相似文献   

18.
Semiconductor materials form the basis of modern electronics, communication, data storage and computing technologies. One of today’s challenges for the development of future technologies is the realization of devices that control not only the electron charge, as in present electronics, but also its spin, setting the basis for future spintronics. Spintronics represents the concept of the synergetic and multifunctional use of charge and spin dynamics of electrons, aiming to go beyond the traditional dichotomy of semiconductor electronics and magnetic storage technology. The most direct method to induce spin-polarized electrons into a semiconductor is by introducing appropriate transition-metal or rare-earth dopants producing a dilute magnetic semiconductor (DMS). At the same time the seamless integration of future spintronic devices into nanodevices would require the fabrication of one-dimensional DMS nanostructures in well-defined architectures. In this review we focus on recent advances in the synthesis of DMS nanowires as well discussing the structural, optical and magnetic properties of these materials. PACS 75.75.+a; 81.07.Vb; 68.65.La  相似文献   

19.

Abstract  

The reliable measurement of the 3D3C velocity field in microfluidic devices becomes more and more important for future optimization and developments for lab-on-a-chip applications or point-of-care medical diagnosis systems. In the past years, different particle-based imaging methods, such as confocal scanning microscopy, holography, stereoscopic and tomographic imaging or approaches based on defocused particle images or optical aberrations have been developed and applied successfully to measure velocity fields in microfluidic systems. The benefits and drawbacks of these methods will be discussed in detail as the proper understanding of the measurement principle is essential to select the most appropriate technique for a desired measurement application. Once an imaging method is chosen, the velocity can be estimated by correlation-based methods or tracking approaches. The advantages and disadvantages of both methods and the importance of image preprocessing will also be discussed in detail.  相似文献   

20.
In this paper, we will review research done by the Large-Scale Integrated Photonics group at HP Laboratories, and in particular we will discuss applications of optical resonances in dielectric microstructures and nanostructures to future classical and quantum information technologies. Our goal is to scale photonic technologies over the next decade in much the same way as electronics over the past five, thereby establishing a Moore’s Law for optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号