共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
活性炭负载钌基氨合成催化剂炭甲烷化反应的抑制 总被引:1,自引:0,他引:1
本文利用等体积浸渍法制备了系列活性炭负载的钌基氨合成催化剂,考察了助剂Sm2O3、Ba、K对活性炭负载的钌基氨合成催化剂稳定性和催化活性的影响,探讨了其抑制炭的甲烷化反应和改善活性的调变规律。用TPD技术研究了氢在系列催化剂上的脱附行为,并对助剂对催化剂稳定性的调变作用和钌基氨合成催化剂高性能的原因作了探讨。结果表明,助剂Sm2O3、Ba、K对活性炭负载的钌基氨合成催化剂的稳定性和催化活性均有很好的效果,而且多助剂改善的催化剂稳定性和催化活性明显优于单助剂催化剂。 相似文献
3.
4.
采用X射线衍射、N2物理吸附和程序升温脱附-质谱等表征手段考察了活性炭经Ar气保护下高温石墨化、O2-N2混合气氧化和HNO3处理后孔结构及表面基团的变化.结果表明,活性炭在惰性气氛中高温处理能够部分石墨化,且温度越高,石墨化程度越高.高温处理后的活性炭纯度和稳定性提高,但其比表面积大幅度减小.进一步的氧化扩孔处理能在一定程度上恢复石墨化活性炭的比表面积和孔结构.随后的HNO3处理可以使石墨化活性炭表面的含氧基团增加,改变载体的浸润性能,有利于催化剂活性组分的分散及催化活性的提高. 相似文献
5.
超声法制备掺钡纳米氧化镁及其负载钌基氨合成催化剂的催化性能 总被引:1,自引:0,他引:1
采用超声技术制备掺钡纳米氧化镁,并以其为载体,以Ru3(CO)12 为前驱体,采用浸渍法制备了一系列钌基氨合成催化剂. 采用场发射扫描电镜、 X射线衍射和N2物理吸附等表征手段,考察了催化剂的表面形貌、物相和表面织构性质. 在400~450 ℃的条件下评价了催化剂对氨合成的催化活性. 结果表明,以超声技术制备的掺钡纳米氧化镁有较大的比表面积和较规则的孔道结构,并增强了钡、镁之间的相互作用,使钡更均匀地分散于载体中,极大地提高了钡的促进作用,从而使其负载的钌基催化剂的活性大幅度提高. 当超声作用为时间30 min时,在10 MPa, 425 ℃和空速 10 000 h-1 的条件下, 4%Ru/Ba-MgO催化剂上的氨合成反应速率达到61.02 mmol/(g·h). 相似文献
6.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm-2时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d5/2的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm-2时,钌金属传递电子给氧化铈,此时Ru 3d5/2结合能有所增加;当钌表面密度高于1.4 Ru nm-2后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d5/2结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm-2以及约为2.1 Ru nm-2时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导. 相似文献
7.
活性炭及表面性质对Ru基氨合成催化剂性能的影响 总被引:8,自引:1,他引:8
采用N2物理吸附和He-TPD等表征手段考察了不同活性炭及其经HNO3和氧化处理后的孔结构性质及表面基团的变化,并用CO化学吸附分析了其对活性组分Ru分散度的影响. 结果表明,活性炭较发达的中孔结构可显著提高Ru的分散度. 活性炭的部分表面含氧基团是Ru的分散中心,它们的量会明显影响催化剂的Ru分散度及活性. 活性炭经HNO3处理虽然可以使含氧基团的量增加,但同时也使不稳定基团的量增加,这些不稳定基团在催化剂还原过程中分解,不利于Ru的分散. 活性炭的气相热处理可以调变其表面结构及表面基团,从而提高 Ru的分散度及催化剂活性. 相似文献
8.
9.
采用分光光度法测定活性炭负载钌系氨合成催化剂中的钌含量.在强酸和乙醇体系中,Ru(Ⅲ)与硫脲生成蓝色物,于最大吸收波长λ=620am处测定催化剂中的钌含量.测试结果表明,该方法操作简单、干扰小,相对标准偏差为1%~3%,加标回收率在97.5%~102.0%之间,适用于活性炭负载钌系氨合成催化剂中钌含量的准确测定. 相似文献
10.
活性炭载体的超声波处理对钌/活性炭氨合成催化剂催化性能的影响 总被引:2,自引:0,他引:2
利用超声波处理活性炭,并采用场发射扫描电镜、X射线能谱、N2物理吸附和CO化学吸附等表征手段,考察了超声波处理对活性炭表面形貌、化学组成、表面织构和催化剂钌分散度的影响. 以超声波处理的活性炭为载体,以钡和钾为助剂制备了一系列钌基氨合成催化剂,在10.0 MPa,10000 h-1和400 ℃的条件下进行了氨合成活性评价. 结果表明,超声波处理可有效除去活性炭表面的杂质,提高中孔比表面积占BET比表面积的比例. 超声波处理50 min的活性炭表面的杂质含量较低,中孔比表面积适中,以其为载体制备的钌基催化剂的活性较高,催化氨合成反应速率可达94.8 mmol/(g·h). 相似文献
11.
活性炭负载钌基氨合成催化剂的制备和催化活性 总被引:29,自引:1,他引:29
A series of active carbon supported ruthenium based catalysts, promoted by alkali and alkaline earth nitrate, are prepared by impregnation method and with RuCl 3·3H 2O as precursor. Effects of support, promoter and preparation conditions on catalytic activity are discussed. The catalytic activity is evaluated with a fixed bed micro reactor at lower pressure. The results show that the impregnation sequence affects the catalytic activity obviously. Ba Ru K/C is the preferred impregnation sequence. And effects of nature, producing area and pre treatment of the support on catalytic activity are also examined. Catalytic activity increases with the amount of Ru deposited on the support, it attains maximum when Ru loading is 8%. Optimal molar ratio of promoter to Ru is 10. 相似文献
12.
研究了稀土金属氧化物La2O3,CeO2,Pr2O3,Nd2O3和Sin2O3对Ru-Bd堇青石催化剂的活性的影响。利用BET,BJH,SEM,XRD,CO化学吸附等测试手段对催化剂进行表征,并对催化剂的反应性能进行评价。SEM测试结果显示La2O3呈“虫卵状”聚集在茧青石表面,而CeO2呈立方CaF2型均匀的覆盖在堇青石表面,Ru粒子呈“孤岛状”均匀地分散在铈改性的堇青石载体表面。茧青石载体经CeO2改性后,催化剂的比表面积、比孔容积以及中、微孔数量均有所提高,孔径分布也得到了明显改善。活性数据显示,适量的稀土金属氧化物均能促进Ru-Ba/堇青石催化剂的活性,其中CeO2的改性效果最好,在10MPa,475℃,5000h^-1时CeO2改性的Ru-Ba/茧青石催化剂的氨合成转化率达到9.9%。研究了CeO2对氨浓度随温度、压力、空速变化趋势的影响。 相似文献
13.
采用氧化-还原共沉淀法制备了Pr掺杂的Ru/CeO2-PrO2氨合成催化剂,并运用N2物理吸附、X射线粉末衍射、H2程序升温还原、CO化学吸附、N2程序升温脱附、场发射扫描电镜、高分辨透射电镜和X射线光电子能谱等技术对其进行了表征,考察了Pr添加量对催化剂表面结构和性能的影响.结果表明,Pr掺杂对Ru/CeO2催化剂的比表面积和Ru分散度都有所影响.当CeO2中Pr掺杂量为4%时,在425oC,10MPa,10000h–1的反应条件下,氨合成转化频率可达到12.13×10–2s–1,较Ru/CeO2催化剂提高了58%,这主要归结于复合材料电子传导性能的提高. 相似文献
14.
氧化镁载体和氧化钡助剂对钌基氨合成催化剂结构和性能的影响 总被引:2,自引:0,他引:2
采用不同来源氧化镁(市售MgO-1,合成MgO-2)作为钌基氨合成催化剂载体,浸渍法制备了添加不同BaO助剂含量的Ba-Ru/MgO催化剂,通过X射线衍射(XRD)、热重-量热扫描分析(TG/DSC)、N2-低温物理吸附、透射电镜(TEM)、H2程序升温还原(H2-TPR)和CO2程序升温脱附(CO2-TPD)等手段对其进行了表征,考察了不同来源的MgO和BaO助剂含量对负载型钌基氨合成催化剂的物相结构、织构性质、微观形貌、Ru物种的还原性质和体系酸碱性质以及催化剂的氨合成活性等方面的影响。结果表明,MgO的理化性质对所制备的钌基氨合成催化剂的结构以及氨合成活性有较大影响。MgO-2比表面较大,总碱性位数量较多,负载在其表面的Ru粒子粒径在2 nm左右,nBa∶nRu为1.0时,Ba-Ru(1∶1)/MgO-2催化剂表面的Ru物种易于还原,表面存在的弱碱性位极大地促进了氨合成活性,在400°C时活性达到15.40 L.g-1Ru.h-1(3.0 MPa,5 000 h-1),在相同反应条件下比Ba-Ru/MgO-1催化剂活性更高。 相似文献
15.
采用浸渍法制备了系列不同质量比的MgO/h-BN复合载体负载的Ru基氨合成催化剂,采用X射线衍射、N2低温物理吸附、X射线荧光、扫描电镜、透射电镜、程序升温分析等手段对催化剂进行了详细的表征,并在固定床反应器上考察了它们在氨合成反应中的催化性能.结果表明,MgO/h-BN复合载体中h-BN含量对催化剂活性的影响较大,Ba-Ru[1:1](摩尔比)/MgO/h-BN[8:2](质量比),Ba-Ru[1:1]/MgO/h-BN[6:4]和Ba-Ru[1:1]/MgO/h-BN[5:5]催化剂上氨合成活性均高于Ba-Ru/MgO催化剂.在425°C,5.0MPa,N2/H2=1/3和5000h?1条件下,Ba-Ru[1:1]/MgO/h-BN[8:2]表现出最优催化活性,达506.9ml/(gcat·h).这可归因于MgO/h-BN复合载体上存在较高数量的碱性位,特别是弱碱性位和中等强度碱性位,而这些碱性位可能是由MgO和h-BN之间的相互作用造成. 相似文献