首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction between benzyl chloride and aqueous ammonium sulfide was carried out in an organic solvent – toluene, using tetrabutylammonium bromide (TBAB) as phase transfer catalyst (PTC). Two products, namely dibenzyl sulfide (DBS) and benzyl mercaptan (BM), were identified in the reaction mixture. The selectivity of DBS was maximised by changing various parameters such as NH3/H2S mole ratio, stirring speed, catalyst loading, concentration of benzyl chloride, volume of aqueous phase, and temperature. The highest selectivity of DBS obtained was about 90% after 445 min of reaction with excess benzyl chloride at 60 °C. Complete conversion of benzyl chloride could be achieved at the cost of very low selectivity of DBS and very high selectivity of BM. The apparent activation energy for the kinetically controlled reaction was found to be 12.3 kcal/mol. From the detailed study of the effects of various parameters on the reaction, a suitable mechanism was established which could explain the course of the reaction.  相似文献   

2.
A theoretical analysis of the accuracy of the volumetric method for the determination of liquid–liquid equilibrium was carried out. The results show that, under certain conditions, this method can be used to investigate systems showing relatively small mutual solubilities. Relations were derived to estimate standard deviations of the equilibrium compositions determined by the volumetric method.

In the experimental part of the work, an apparatus for measurements of mutual solubilities of liquids was constructed. A procedure that enabled us to determine precisely volumes of liquid phases was developed. This procedure and apparatus present the advantage that relatively small amounts of samples are required (approximately 2 × 20 ml). Theoretical conclusions concerning the applicability of the volumetric method were checked by measuring mutual solubilities at 303.15 K in systems methylcyclohexane + N,N-dimethylformamide, 1-butanol + water and dimethyl phthalate + water. Further, the method was used to measure systematically the liquid–liquid equilibrium in systems ethyl acetate + ethylene glycol and phenyl acetate + ethylene glycol at temperatures from 293 to 323 K. Data for these systems were acquired by means of other methods as well and a good agreement was observed on comparison.  相似文献   


3.
Liquid–liquid equilibria (LLE) of the multicomponent system water + ethanol + a synthetic reformate (composed of benzene, n-hexane, 2,2,4-trimethylpentane, and cyclohexane) was studied at atmospheric pressure and at 283.15 and 313.15 K. The mutual reformate–water solubility with addition of anhydrous ethanol was investigated. Different quantities of water were added to the blends in order to have a wide water composition spectrum, at each temperature. We conclude from our experimental results, that this multicomponent system presents a very small water tolerance and that phase separation could result a considerable loss of ethanol that is drawn into the aqueous phase. The results were also used to analyse the applicability of the UNIFAC group contribution method and the UNIQUAC model. Both models fit the experimental data with similar low average root mean square deviations (rsmd ≤ 2.05%) yielding a satisfactory equilibrium prediction for the multicomponent system, although the predicted ethanol (rsmd ≤ 4.6%) compositions are not very good. The binary interaction parameters needed for the UNIQUAC model were obtained from the UNIFAC method.  相似文献   

4.
The liquid–liquid equilibrium of water/1-propanol/methyl ethyl ketone (MEK) at 25°C was significantly modified by the presence of dissolved potassium chloride. Water is salted out of the organic phase while MEK is more preferentially salted out of the aqueous phase than 1-propanol. These results in considerable enlargement of the two-phase region and enhancement of the extractive efficiency of MEK for the separation of 1-propanol from its aqueous mixture. Good correlation of the liquid–liquid equilibria (LLE) of the system in the presence of potassium chloride up to saturation was obtained with Tan’s modified NRTL phase model for multicomponent solute–solvent mixtures with the solute–solvent interaction parameters expressed as a third-order polynomial function in salt concentration. Similar to the observation reported for vapour–liquid equilibrium (VLE) of solvent–solute mixtures, salting-in and salting-out of the solvent components from the respective phases can be predicted according to the relative solute–solvent interaction parameters of the solvent components in the two phases.  相似文献   

5.
A facile synthesis of 1,2‐azidoalcohols from their epoxides using α,α',α”‐N‐hexakis(triethylammoniummethylene chloride)‐melamine as a multi‐site phase‐transfer catalyst in water was developed. By this eco‐friendly and highly atom‐economic method, a variety of 1,2‐azidoalcohols was obtained in high yields with excellent regioselectivity and in short reaction times. Application of this six‐site PTC in the ring opening of epoxides by cyanide, acetate and chloride anions was also studied. The catalyst can be recovered after completion of the reaction and can be recycled without affecting the catalytic property.  相似文献   

6.
Liquid–liquid equilibrium data are presented for the pseudoternary systems isooctane–benzene–(90 mass% methanol + 10 mass% water) at 298.15 K and isooctane–benzene–(80 mass% methanol + 20 mass% water) at 298.15 and 308.15 K, under atmospheric pressure. The experimental tie-line data obtained define the binodal curve for each one of the studied systems which depending on the amount of water present show type I or type II liquid–liquid phase diagrams. In order to obtain a general view of the effect of water on the partitioning of methanol and hence on the size of the two-phase region we have also determined experimentally ‘isowater’ tolerance curves for the system isooctane–benzene–methanol at 298.15 K, hence the tie-line data were also obtained for the ternary system. The experimental tie-line data for the four systems studied were correlated with the NRTL and UNIQUAC solution models obtaining a very good reproduction of the experimental behaviour.  相似文献   

7.
The reaction of Ag2O with pybz (pybz=4-(4-pyridyl)benzoate) gave the monomer compound [Ag(pycz)(H2O)], 1. Using 4,4′-bipyridyl (bpy) as a spacer to increase the length of the monomer resulted in the nanosized molecular chain compound [Ag2(pybz)2(bpy)], 2. In 1, two monomers [Ag(pycz)(H2O)] are combined together through Agπ, ππ and Ag(CC) interactions to form a dimer, with the distances of 3.34, 3.56 and 3.18 Å, respectively. In 2, the [Ag2(pybz)2(bpy)] units are held together via ππ (3.4–3.5 Å) interactions resulting in a 3D network with 1D open channels.  相似文献   

8.
The phase diagram was determined for the Na2CO3–PEG–H2O system at 25°C using PEG (poly(ethylene glycol)) with a molecular weight of 4000. Compositions of the liquid–liquid and the liquid–liquid–solid equilibria were determined using calibration curves of density and index of refraction of the solutions, and atomic absorption (AA) and X-ray diffraction analyses were made on the solids. The solid phase in equilibrium with the biphasic region was Na2CO3·H2O. Binodal curves were described using a three-parameter equation. Tie lines were described using the Othmer–Tobias and Bancroft correlation’s. Correlation coefficients for all equations exceeded 0.99. The effects of temperature (25 and 40°C) and the molecular weight of the PEG (2000, 3000, and 4000) on the binodal curve were also studied, and it was observed that the size of the biphasic region increased slightly with an increase in these variables.  相似文献   

9.
In this study, the extraction of Bi(III) from synthetic solutions of 2 M H2SO4/0.5 M HCl by supported liquid membranes (SLM) using tri-n-octylphosphine oxide (Cyanex 921) as extractant is reported. First, the nature of the Bi(III)/Cyanex 921 solvates extracted to organic phase (in a solvent extraction system) was determined by the slope method. It was found that Bi(III) reacts with 2 molecules of Cyanex 921 to form the solvate BiCl3·2Cyanex 921. In the recovery of Bi(III) by the SLM system, parameters that influence extraction efficiency were evaluated, including: support, feed solution and stripping solution nature, and extractant concentration in the organic phase which impregnates the support. Results indicate that Cyanex 921 dissolved in kerosene is not able to extract Bi(III) from H2SO4 media. Moreover, transfer of H2SO4 was observed. HCl addition to the feed solution up to a maximum concentration of 0.5 M increases Bi(III) extraction. Further increase in HCl concentration causes a decrease in Bi(III) transfer. Likewise, the concentration of Cyanex 921 in the SLM organic phase which produced the maximum Bi(III) extraction was found to be 0.3 M. The performance of H2O and 0.2 M H2SO4 as stripping solutions was evaluated, and it was found that only H2SO4 enabled Bi(III) transfer.  相似文献   

10.
Summary 4-(Trialkylammonio)propansultans (TAAPSs), synthesized by the addition reaction of 1,3-propane sultone (PS) and trialkylamines (TAAs), were developed as new phase transfer catalysts for synthesizing dialkoxymethane. The reaction between alcohol and dibromomethane in a highly alkaline solution of KOH/organic solvent two-phase medium were carried out under phase-transfer catalysis (PTC) using TAAPSs as the catalyst. High conversion of dibromomethane and high selectivity of the product were obtained using TAAPSs as the catalyst.</o:p>  相似文献   

11.
Lippolis V  Pascale M  Maragos CM  Visconti A 《Talanta》2008,74(5):1476-1483
T-2 and HT-2 toxins are Fusarium mycotoxins that can occur in cereals and cereal-based products. Three fluorescent labeling reagents, i.e. 1-naphthoyl chloride (1-NC), 2-naphthoyl chloride (2-NC) and pyrene-1-carbonyl cyanide (PCC), were used for the determination of T-2 and HT-2 toxins by high-performance liquid chromatography (HPLC) with fluorescence detection (FD). Pre-column derivatization of T-2 and HT-2 toxins was carried out under mild conditions (50 °C, 10 min) in toluene with 4-dimethylaminopyridine (DMAP) as catalyst. All fluorescent derivatives were identified and characterized by HPLC-tandem mass spectrometry (HPLC-MS/MS). Optimal stoichiometric ratios (toxin:derivatizing reagent:catalyst), linear range and repeatability of the reaction, stability and sensitivity of the derivatives were determined. A wide linear range (10–1000 ng of either derivatized T-2 or HT-2 toxin), good stability (up to 2 weeks at −20 °C or 5 days at room temperature) of the fluorescent derivatives and good repeatability of the reaction (RSD ≤ 8%) were observed. Detection limits (based on a signal-to-noise ratio of 3:1) were 10.0, 6.3 and 2.0 ng for derivatized T-2 toxin and 6.3, 2.3 and 2.8 ng for derivatized HT-2 toxin with 1-NC, 2-NC and PCC, respectively. In terms of sensitivity and repeatability, PCC and 2-NC reagents showed better performance than 1-anthroylnitrile (1-AN), a previously reported labeling reagent for T-2- and HT-2 toxins. Preliminary studies also showed the applicability of PCC and 2-NC as fluorescent labeling reagents for the simultaneous determination of T-2 and HT-2 toxins in cereal grains by HPLC/FD following immunoaffinity column clean-up.  相似文献   

12.
《合成通讯》2013,43(10):1359-1368
Abstract

Indole derivatives have been efficiently synthesized from ethyl 2‐phenylhydrazono‐5‐phthalimido‐pentanoate and its derivatives, which were obtained by Japp–Klingmann reaction under phase‐transfer catalytic (PTC) conditions. Several different phase‐transfer catalysts were investigated and dimethyldioctadecyl ammonium chloride (DMDOA) was found to promote this reaction efficiently. Using DMDOA as the PTC, aryl hydrazones were obtained in yields of 90%. The pure aryl hydrazones were then efficiently cyclized to indole derivatives in yields of more than 80%.  相似文献   

13.
CoAl-MCM-41 (X) catalysts with X = nSi/(nCo + nAl) various ratios were synthesized and ethylation of phenol with ethanol was studied in vapor-phase at temperatures between 250 and 450 °C. The products obtained were O-alkylated product (ethyl phenyl ether), C-alkylated products (2-ethylphenol and 4-ethylphenol), and C-/O-alkylated products (ethyl ethylphenyl ether). The phenol conversion increased significantly with reaction temperature over all the catalysts. The activity of the catalysts followed the order CoAl-MCM-41 (20) > CoAl-MCM-41 (50) > CoAl-MCM-41 (80). Selectivity between the C-alkylation and the O-alkylation depended on the factors such as acidity of the catalyst and the reaction temperature. CoAl-MCM-41 (20) catalyst displayed a phenol conversion of 40% and a selectivity of more than 80% for 2-ethylphenol under the optimized reaction condition. The ethanol to phenol ratios and the reactant flow rate are also influential for both activity and selectivity of CoAl-MCM-41 catalysts.  相似文献   

14.
The structures of 3,3′-dicarbometoxy-2,2′-bipyridine (dcmbpy) complexes with copper(II) and silver(I) cations have been determined using single crystal X-ray-diffraction. The crystals of Cu(dcmbpy)Cl2 are monoclinic, C2/c, a = 16.966(3), b = 18.373(3), c = 13.154(2) Å, β = 126.543(3)°. The crystals of Ag(dcmbpy)NO3 · H2O are also monoclinic, C2/c, a = 16.7547(13), b = 11.0922(9), c = 18.7789(18) Å, β = 100.228(7)°. The results have been compared with the literature data on the complexes of dcmbpy and its precursors: 2,2′-bipyridine (bpy) and 3,3′-dicarboxy-2,2′-bipyridine (dcbpy). Two types of complexes of 3,3′-carboxy derivatives of bpy are distinguished: (1) with metal atom bonded to two N atoms of the same molecule and (2) with metal atom bonded to two N atoms of two different molecules. The Cu(dcmbpy)Cl2 complex belongs to the first type, whereas Ag(dcmbpy)NO3 · H2O belongs to the second type.  相似文献   

15.
Isothermal vapor–liquid equilibrium (VLE) data for five binary systems ethyl acetate + 3-methyl-1-butanol, ethanol + 3-methyl-1-butanol, ethyl acetate + 2-methyl-1-butanol, ethanol + 2-methyl-1-butanol, ethyl acetate + 2-methyl-1-propanol, involved in the alcoholic distillation have been determined experimentally by headspace gas chromatography. The composition in the liquid phase was corrected with the help of an iterative method by means of a GE model. However, due to the large density difference between the liquid and the vapor, the correction of the liquid phase composition is nearly negligible. All the binary mixtures show positive deviations from Raoult's law. The experimental VLE data are well predicted by using the modified UNIFAC model (Dortmund).  相似文献   

16.
One-pot condensation of β-dicarbonyl compounds with aldehydes and ammonium acetate in the presence of HClO4–SiO2 at 80 °C under solvent-free conditions with good to excellent yields. The catalyst is easily prepared, stable, reusable and efficiently used under reaction conditions.  相似文献   

17.
Simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and gas and liquid chromatography with mass spectrometry detection have been used to study the kinetics and decomposition of 2-hydroxybenzoic acid, 2-carboxyphenyl ester, commercially known as salsalate. Samples of salsalate were heated in the TG–DTA apparatus in an inert atmosphere (100 ml min−1 nitrogen) in the temperature range 30–500 °C. The data indicated that the decomposition of salsalate is a two-stage process. The first decomposition stage (150–250 °C) had a best fit with second-order kinetics with Ea=191–198 kJ/mol. The second decomposition stage (300–400 °C) is described as a zero-order process with Ea=72–80 kJ/mol. The products of the decomposition were investigated in two ways:
(a)Salsalate was heated in a gas chromatograph at various isothermal temperatures in the range 150–280 °C, and the exit gas stream analyzed by mass spectrometry (GC–MS). This approach suggested that salsalate decomposes with the formation of salicylic acid, phenol, phenyl salicylate, and cyclic oligomers of salicylic acid di- and tri-salicylides.
(b)One gram samples of salsalate were heated in a vessel under nitrogen to 150 °C, and the residues were analyzed by liquid chromatography–mass spectrometry (LC–MS). The major compound detected was a linear tetrameric salicylate ester.
  相似文献   

18.
Liquid–liquid equilibrium (LLE) data of water + acetic acid + dimethyl adipate have been determined experimentally at 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining binodal curve and tie-lines. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. UNIFAC and modified UNIFAC models were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data of CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

19.
Three new aromatic diester–dicarboxylic acids containing furan rings, namely, benzofuro[2,3-b]benzofuran-2,9-dicarboxyl-bis-phenyl ester-4,4-dicarboxylic acid, benzofuro[2,3-b]benzofuran-2,9-dicarboxyl-bis-phenyl ester-3,3-dicarboxylic acid and benzofuro[2,3-b]benzofuran-2,9-dicarboxyl-bis-naphthyl ester-2,2-dicarboxylic acid were synthesized by the reaction of benzofuro[2,3-b]benzofuran-2,9-dicarbonyl chloride with 4-hydroxybenzoic acid, 3-hydroxybenzoic acid and 3-hydroxy-naphthalene-2-carboxylic acid, respectively. Diester–dicarboxylic acids were characterized by FT-IR and NMR spectroscopy and elemental analyses. Then, these monomers were converted to aromatic copoly(ester–amide)s by their reaction with various aromatic diamines via the direct polycondensation. These polymers were characterized by viscosity measurements, solubility tests, FT-IR, Ultraviolet and 1H-NMR spectroscopy and thermogravimetry. The polymers with inherent viscosities in the range of 0.16–0.37 dl/g in dimethyl sulfoxide at 30 °C were obtained in high yield. Most of them dissolved readily at room temperature in polar solvents. The synthesized copoly(ester–amide)s possessed glass-transition temperatures from 210–255 °C. The copoly(ester–amide)s exhibited excellent thermal stabilities and had 10% weight loss at temperature above 295 °C under nitrogen atmosphere.  相似文献   

20.
Organic sulfonyl fluorides are of interest owing to their insecticidal, germicidal and enzyme inhibitory properties. In the current work synthesis of p-toluenesufonyl fluoride was accomplished by reacting p-toluenesulfonyl chloride with solid potassium fluoride using PEG-400 as a catalyst under solid-liquid phase transfer catalysis (S-L PTC) at 30 °C. p-Toulenesulfonyl fluoride is used as peroxygen bleach activator. It also finds use in the treatment of Alzheimer's disease. The mechanism is based on homogeneous solubilization of solid. PEG forms a complex with metal cation which associates with the nucleophile and it participates in SN2 type reaction. The reaction is intrinsically kinetically controlled. A complete theoretical analysis is done to determine both the rate constant and equilibrium constant from the same set of data. The activation energy and Gibbs free energy are also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号