首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of the research work was to investigate the effect of the presence and concentration of solid particles on the gas-liquid volumetric mass transfer coefficient in a mechanically stirred gas-solid-liquid system. Experimental studies were conducted in a tall vessel of the diameter of 0.288 m, equipped with two designs of double stirrers. Three high-speed stirrers were used: A 315, Smith turbine, and Rushton turbine. The following operating parameters were changed: gas flow rate, stirrer speed, and solid concentration. The volumetric mass transfer coefficient was determined using the dynamic gassing-out method. In the range of the measurements conducted, this coefficient was strongly affected by both the presence and the concentration of particles in the system. Generally, a low concentration of particles in the system, equal to 0.5 mass %, caused an increase of the volumetric mass transfer coefficient values for both stirrer configurations compared to a system without solids whilst more particles (2.5 mass %) caused a decrease of this coefficient. It could be supposed that an increase of slurry viscosity affected the decrease of the volumetric mass transfer coefficient at higher solid concentration. An empirical correlation was proposed for volumetric mass transfer coefficient prediction. Its parameters were fitted using experimental data. Presented at the 35th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 26–30 May 2008.  相似文献   

2.
The structure-activity relationship and behavior of N,N′-dialkylimidazolium salts as a phase transfer and/or ion-exchange catalyst in a liquid-liquid phase system were investigated for the reactions such as β-elimination reaction of alkyl halides, nucleophilic epoxidation of α,β-unsaturated carbonyl compounds, alkylation of active methylenes, and nucleophilic substitution reaction.  相似文献   

3.
Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.  相似文献   

4.
The direct addition of NH across a CC multiple bond (hydroamination) was efficiently catalysed in a liquid-liquid two-phase system. The latter comprised a polar catalyst phase of Zn(CF3SO3)2 in the ionic liquid 1-ethyl-3-methylimidazolium trifuoromethanesulfonate and a substrate mixture in heptane. The possibility of catalysing different hydroamination reactions continuously was demonstrated.  相似文献   

5.
The problem of heat transfer from a cylindrical pipe is formulated for a case where the flow inside the pepe consists of a periodic motion imposed on a fully developed steady laminar flow. It is shown that the velocity pulsations induce harmonic oscillations in temperature thus breaking the temperature field into a steady mean part and a harmonic part. The interaction between the velocity and temperature oscillations introduces an extra term in the energy equation which reflects the effect of pulsations in producing higher heat transfer rates.  相似文献   

6.
The formation of reversed micelles and the roles of extractant and extracted complexes were investigated in the Cyanex923/n-heptane/H(2)SO(4) system. Interfacial tension (gamma), electrical conductivity (kappa), and water content measurements showed that Cyanex923 had a tendency to self-assemble, forming reversed micelles. The changes in electrical conductivity with concentration of H(2)SO(4) in the organic phase (C(H2)SO(4), o) exhibited an S-type curve: a correlation was found between the change in electrical conductivity and the water content as a function of C(H2)SO(4), o. The changes of electrical conductivity were mainly induced by the components and microstructure in the organic phase, while the conversion of extracted complex also resulted in the changes of components and microstructure in the organic phase. Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS) were used to characterize the organic phases and sizes of the reversed micelles, respectively. The extractant and extracted complexes, such as Cyanex923H(2)SO(4), were involved in the formation of reversed micelles.  相似文献   

7.
The present state of hydrodynamics and mass transfer studies in segmented gas-liquid flow in microchannels has been analyzed. It has been shown that such parameters as gas bubble velocity, gas hold-up, relative gas bubble length, pressure drop, mass transfer coefficients from gas bubbles to liquid slugs and to liquid film, as well as mass transfer coefficient from liquid to channel wall can be satisfactorily predicted. Nevertheless, some correlations were obtained under definite conditions and should be summarized. The purpose of further research is to develop reliable methods for calculation of mass transfer coefficients as functions of channel geometry, phase properties, and phase velocities in mini- and microchannels.  相似文献   

8.
A solution of the problem of mass transfer in a turbulent boundary layer has been obtained with a first-order chemical reaction occurring in the liquid phase. The dependence of the enhancement factor for absorption and of the mass transfer coefficient on the model parameters can be used for building up a hierarchic model of the gas-liquid reactor.
. .
  相似文献   

9.
The Graetz problems for power law non-Newtonian fluids with a constant wall temperature and a constant wall heat flux are solved by a coordinate perturbation method. The normalized temperature is expanded as a power series of the transformed axial distance. The zero-order solution of the constant wall temperature problem is the Levegue solution. However, the zero-order solution of the constant wall heat flux problem is zero, and the first-order solution is the Leveque solution. Detailed analytical and numerical results are given to show the effects of the flow index and the Brinkman number on the rate of heat transfer for the constant wall temperature problem and on the heat transfer coefficient for the constant wall heat flux problem. The perturbation solutions are useful for large Graetz numbers.  相似文献   

10.
The competitive adsorption behavior of the binary mixture of phenetole (ethoxy-benzene) and propyl benzoate in a reversed-phase system was investigated. The adsorption equilibrium data of the single-component systems were acquired by frontal analysis. The same data for binary mixtures were acquired by the perturbation method. For both compounds, the single-component isotherm data fit best to the multilayer BET model. The experimental overloaded band profiles are in excellent agreement with the profiles calculated with either the general rate model or the modified transport-dispersive models. The competitive adsorption data were modeled using the ideal adsorbed solution (IAS) theory. The numerical values of the coefficients were derived by fitting the retention times of the perturbation pulses to those calculated using the IAS theory compiled with the coherence conditions. Finally, the elution profiles of binary mixtures were recorded. They compared very well with those calculated. As a characteristic feature of this case, an unusual retainment effect of the chromatographic band of the more retained component by the less retained one was observed. The combination of the General Rate Model and the adsorption isotherm model allowed an accurate prediction of the band profiles.  相似文献   

11.
12.
Fourier transform ion cyclotron resonance (FTICR) mass spectrometers function such that the ion accumulation event takes place in a region of higher pressure outside the magnetic field which allows ions to be thermally cooled before being accelerated toward the ICR cell where they are decelerated and re-trapped. This transfer process suffers from mass discrimination due to time-of-flight effects. Also, trapping ions with substantial axial kinetic energy can decrease the performance of the FTICR instrument compared with the analysis of thermally cooled ions located at the trap center. Therefore, it is desirable to limit the energy imparted to the ions which results in lower applied trap plate potentials and reduces the spread in axial kinetic energy. The approach presented here for ion transfer, called restrained ion population transfer or RIPT, is designed to provide complete axial and radial containment of an ion population throughout the entire transfer process from the accumulation region to the ICR cell, eliminating mass discrimination associated with time-of-flight separation. This was accomplished by use of a number of quadrupole segments arranged in series with independent control of the direct current (DC) bias voltage applied to each segment of the quadrupole ion guide. The DC bias voltage is applied in such a way as to minimize the energy imparted to the ions allowing transfer of ions with low kinetic energy from the ion accumulation region to the ICR cell. Initial FTICR mass spectral data are presented that illustrate the feasibility of RIPT. A larger m/z range for a mixture of peptides is demonstrated compared with gated trapping. The increase in ion transfer time (3 ms to 130 ms) resulted in an approximately 11% decrease in the duty cycle; however this can be improved by simultaneously transferring multiple ion populations with RIPT. The technique was also modeled with SIMION 7.0 and simulation results that support our feasibility studies of the ion transfer process are presented.  相似文献   

13.
Periodic convective instability has been observed in a biphasic system during the complexation reaction of alkali picrate and dicyclohexano-18-crown-6 which undergoes mass transfer from the hexane phase into the aqueous phase. The convection was visualized by means of precipitated crystals that are formed in both phases by the complexation reaction. The fluid motion was observed with an optical microscope and further analyzed with the particle image velocimetry (PIV) technique. The partition at the extraction of cesium into the organic phase was followed by means of the radioactive isotope (137)Cs. The type of the hydrodynamic instability is governed by the alkali metal expressed via its stability constants for the complex formed. More stable complexes trigger a higher precipitation, thereby favoring a Raleigh-Taylor instability. Complexes with a lower stability constant induce Marangoni cells which show a pulsating character in a cubic container. Depending on the confinement of the experiment cell the fluid motion can also follow a back-and-forth movement. Possible mechanisms for the occurring oscillations are discussed.  相似文献   

14.
A microfluidic dielectrophoresis platform consisting of curved microelectrodes was developed and integrated with a Raman spectroscopy system. The electrodes were patterned on a quartz substrate, which has insignificant Raman response, and integrated with a microfluidic channel that was imprinted in poly-dimethylsiloxane (PDMS). We will show that this novel integrated system can be efficiently used for the determination of suspended particle types and the direct mapping of their spatial concentrations. We will also illustrate the system's unique advantages over conventional optical systems. Nanoparticles of tungsten trioxide (WO(3)) and polystyrene were used in the investigations, as they are Raman active and can be homogeneously suspended in water.  相似文献   

15.
The extraction characteristics of a dynamic hollow‐fibre liquid phase microextraction system were investigated by studying the mass transfer and diffusion rates of dinitrophenols from plasma samples over the liquid membrane (dihexylether). The measured diffusion coefficients were compared with theoretical values calculated from Stokes diameters. The diffusion mechanism was simulated by computer and the most polar compounds, 2,4‐dinitrophenol and 4,6‐o‐dinitrocresol, had associated diffusion coefficients that were close to the calculated theoretical values. 2‐sec‐Butyl‐4,6 dinitrophenol and 2‐tert‐butyl‐4,6‐dinitrophenol, the compounds with the highest log P values, were retained by the polypropylene membrane, which reduced the experimentally observed diffusion rates to about half of the theoretical values. The retention was most likely due to dispersive forces interacting with the pore inner walls. Extraction was linearly correlated with time for all compounds and the repeatability was high (RSDs 7–11%), even for the shortest extraction times. Method LOD as the amount injected ranged between 0.3 and 3.1 ng for an extraction cycle of 213 s.  相似文献   

16.
The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were recently analyzed in detail [Castelijns et al. J. Appl. Phys. 2006, 100, 024916]. In this successive work, the gel-forming chemical tetramethylorthosilicate (TMOS) was dissolved in a mineral oil and placed together with heavy water (D2O) in small cylinders. The transfer of TMOS from the oleic phase to the aqueous phase was monitored through nuclear magnetic resonance (NMR) relaxation time measurements of hydrogen in the oleic phase. The rate of gelation was measured through NMR relaxation time measurements of deuterium in the aqueous phase. The temperature, the initial concentration of TMOS, and the type of buffer in the aqueous phase were varied in the experiments. The mass transfer is driven by the rate of hydrolysis, which increases with temperature. The hydrolysis rate is the lowest at a neutral pH and is the highest at a low pH. In the aqueous phase, a sharp decrease in the transverse relaxation time (T2) of 2H is observed, which is attributed to the gel reaction. The plateau in T2 indicates the gel transition point. The gel rates increase with increasing temperature and increasing concentration, and are the highest at a neutral pH.  相似文献   

17.
Chemical dehumidification of air in an important industrial process. Solar energy can be used effectively in such processes for regenerating the absorbent solution. An analytical study of a gas-phase controlled solar regenerator in which the absorbent solution flows as a thin film and air flows cocurrent to it has been made. The governing equations which admit similar solutions for air streams have been solved, the independent parameter being the ratio of liquid to air velocities. The profiles of velocity, temperature and concentration, as well as their gradients, are presented. The normal convective velocity of water evaporating from the moving absorbent liquid surface is always present and has been taken into consideration in the present analysis. As the solution velocity increases, the mass transfer coefficient increases for a given air velocity. The results have been compared with those already reported for cases in which the resistance to mass transfer stems from the liquid phase as well. The analysis also includes the effect of free convection, an effect which is present in solar devices which use relatively low stream velocities, such as those encountered in practical solar regenerators.  相似文献   

18.
19.
The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re- sults are in good agreement with the classical theoretical analysis and previous simulation.  相似文献   

20.
External mass transfer coefficients (kf) were measured for a column packed with fully porous C18-silica spherical particles (50.6 μm in diameter), eluted with a methanol/water mixture (70/30, v/v). The pulse response and the peak-parking methods were used. Profiles of elution peaks of alkylbenzene homologues were recorded at flow rates between 0.2 and 2.0 mL min−1. Peak-parking experiments were conducted under the same conditions, to measure intraparticle and pore diffusivity, and surface diffusion coefficients. Finally, the values of kf for these compounds at 298 K were derived from the first and second moments of the elution peaks by subtracting the contribution of intraparticle diffusion to band broadening. As a result, the Sherwood number (Sh) was measured under such conditions that the Reynolds (Re) and the Schmidt numbers (Sc) varied from 0.004 to 0.05 and from 1.8 × 103 to 2.7 × 103, respectively. We found that Sh is proportional to Reα and Scβ and that the correlation between these three nondimensional parameters is almost the same as those given by conventional literature equations. The values of α and β were close to those in the literature correlations, between 0.26 and 0.41 and between 0.31 and 0.36, respectively. The use of the Wilson–Geankoplis equation to estimate kf values entails a relative error of ca. 15%. So, conventional literature correlations provide correct estimates of kf in HPLC systems, even for particle sizes of the order of a micrometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号