首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, an ion chromatographic method for the simultaneous determination of the disinfection by-products bromate, chlorite, chlorate, and the so-called seven standard anions, fluoride, chloride, nitrite, sulfate, bromide, nitrate and orthophosphate is presented. The separation of the ten anions was carried out using a laboratory-made high-capacity anion-exchanger. The high capacity anion-exchanger allowed the direct injection of large sample volumes without any sample pretreatment, even in the case of hard water samples. For quantification of fluoride, chloride, nitrite, sulfate, bromide, nitrate, orthophosphate and chlorate, a conductivity detection method was applied after chemical suppression. The post-column reaction, based on chlorpromazine, was optimized for the determination of chlorite and bromate. The method detection limit for bromate measured in deionized water is 100 ng/l and for chlorite, it is 700 ng/l. In hard drinking water, the method’s detection limits are 700 ng/l (bromate) and 3.5 μg/l (chlorite). The method’s detection limits for the other eight anions, determined by conductivity detection, are between 100 μg/l (nitrite) and 1.6 mg/l (chlorate).  相似文献   

2.
A contactless conductometric detection (CCD) system for capillary electrophoresis (CE) with a flexible detection cell was applied for the simultaneous determination of small anions and/or cations in rain, surface and drainage water samples. The applied frequency, the amplitude of the input signal, the electrolyte conductivity and electrode distance were found to be the most significant factors affecting the detection sensitivity. 2-(N-Morpholino)ethanesulfonic acid/histidine-based (MES/His) electrolytes were used for direct conductivity detection of anions and cations, while ammonium acetate was selected for indirect conductivity determination of alkylammonium salts. For the simultaneous separation procedure, involving dual-opposite end injection, an electrolyte consisting of 20 mM MES/His, 1.5 mM 18-crown-6 and 20 microM cetyltrimethylammonium bromide provided baseline separation of 13 anions and cations in less than 6 min. The detection limits achieved were 7-30 micrograms/l for direct conductometric detection of various common inorganic cations and anions, excluding F- (62 micrograms/l) and H2PO4- (250 micrograms/l), and 35-178 micrograms/l for indirect conductometric detection of alkyl ammonium cations. The developed electrophoretic method with conductometric detection was compared to ion chromatography.  相似文献   

3.
建立了高氯、高钠油田回注水中痕量无机阴、阳离子和有机酸的离子色谱分析方法。对高钠基质中痕量阳离子的测定,选用IonPac CS12A分析柱、H2SO4溶液梯度淋洗、电导检测器检测;对高氯基质中阴离子及有机酸的测定,选用对OH-具有高选择性的高容量的IonPac AS11-HC柱、KOH梯度淋洗、电导检测器检测。在优化的梯度淋洗条件下,高氯或高钠的存在不影响痕量阴离子或阳离子的测定。该方法具有良好的线性(r=0.9926~0.9990)和精密度(测定组分峰面积的相对标准偏差(n=7)在8.0%以下),回收率  相似文献   

4.
The International Agency for Research on Cancer determined that bromate is a potential human carcinogen, even at low micro/l levels in drinking water. Bromate is commonly produced from the ozonation of source water containing naturally occurring bromide. Traditionally, trace concentrations of bromate and other oxyhalides in environmental waters have been determined by anion exchange chromatography with an IonPac AS9-HC column using a carbonate eluent and suppressed conductivity detection, as described in EPA Method 300.1 B. However, a hydroxide eluent has lower suppressed background conductivity and lower noise compared to a carbonate eluent and this can reduce the detection limit and practical quantitation limit for bromate. In this paper, we examine the effect of using an electrolytically generated hydroxide eluent combined with a novel hydroxide-selective anion exchange column for the determination of disinfection byproduct anions and bromide in municipal and bottled drinking water samples. EPA Methods 300.1 B and 317.0 were used as test criteria to evaluate the new anion exchange column. The combination of a hydroxide eluent with a high capacity hydroxide-selective column allowed sub-microg/l detection limits for chlorite, bromate, chlorate, and bromide with a practical quantitation limit of 1 microg/l bromate using suppressed conductivity detection and 0.5 microg/l using postcolumn addition of o-dianisidine followed by visible detection. The linearity, method detection limits, robustness, and accuracy of the methods for spiked municipal and bottled water samples will be discussed.  相似文献   

5.
用流动相离子色谱法(MPIC),以两性化合物与离子对试剂的混合溶液为流动相,在C18柱上抑制电导检测分析气溶胶中常规无机阴离子和有机酸。实验采用氢氧化四丁基铵(TBAOH)为离子对试剂,与两性化合物3-(N-吗啉)-1-丙磺酸(MOPS)混合,加入Na2CO3无机添加剂作流动相,其浓度为1mmol/L TBAOH/5mmol/LMOPS/0.5mmol/LNa2CO3。分离柱采用硅质C18柱,抑制电导检测。可以较好地分离和检测常见的无机和有机阴离子。该方法具有较好的重现性和线性关系,F^-、Cl^-、NO2^-、Br^-、C3H3O3^-、NO3^-的回收率分别为102.0%、104.6%、102.4%、97.8%、97.75%和102.5%;检出限分别为0.017、0.014、0.0048、0.036、0.16和0.017mg/L。  相似文献   

6.
A suppressed ion chromatography (IC) technique has been evaluated as a chemical monitoring tool for detecting major anions (F-, Cl-, NO3- and SO4(2-)) of condensed steam in geothermal power plants. It is shown that the suppressed IC technique provides a suitable means for preventing possible damage to generating equipment in the geothermal industry. An electrical conductivity detector (0.1 microS sensitivity) with an anion-exchange column (IonPac AS4A-SC), a micro-membrane suppressor (AMMS II), and an isocratic high-pressure pump system were successfully used for detecting low concentrations of inorganic anions. Method detection limits for the anions of interest were <0.184 mg/L. Details of the IC methodology as well as some experimental results obtained during its application for the chemical monitoring of geothermal steam pipes are also described.  相似文献   

7.
An ion chromatography method for the simultaneous determination of trace iodate, chlorite, chlorate, bromide, bromate and nitrite in drinking water has been developed using an anion-exchange column and the suppressed conductivity detector, followed by post-column addition of reagent to enhance visible absorbance detection of ions. A high capacity anion exchange Ion Pac9-HC column (250 mm x 4 mm I.D.) was used. Eight millimole per liter sodium carbonate was used as eluent, an auto-suppression external water mode was selected, 0.5 g/l o-dianisidine.2HCl (ODA)+4.5 g/l KBr+25% methanel+5.6% nitric acid was used as post-column reagent. The post-column reaction (PCR) temperature was at 60 degrees C, and the visible absorbance detected wavelength at 450 nm. The sample's pH and coexist anions had no influence on determination. The method enjoyed a wide linear range and a good linear correlation coefficient (r>0.999). The method detection limits were between 0.023 and 2.0 microg/l. The average recoveries ranged from 87.5 to 110.0%, and the relative standard deviations (RSD) were in the range of 1.1-4.6%. The analytical results by the method of post-column addition of reagent to enhance visible absorbance detection of anions was compared with that of the suppressed conductivity detection, and the former was proved to be better in sensitivity and selectivity. The results showed that this method was accurate, sensitive and might be good for application and suitable for trace analysis at the level of mug/l.  相似文献   

8.
A method is validated for the determination of anions with capillary electrophoresis (CE) in combination with indirect UV detection. The method described here is used for the analysis of eight of the most common anions (fluoride, chloride, bromide, sulphate, nitrate, nitrite, thiosulphate and phosphate). Next, the method is compared with a another buffer system for the determination of anions with CE and indirect UV detection. Typical limits of detection are obtained between 1 and 3 mg/l for the above-mentioned compounds. The repeatability and reproducibility of the system differs per compound and is, with the exception of fluoride and phosphate, between 4 and 6% and 5–10%, respectively. Linearity was observed between 1 and 10 mg/l. The method is applied for the determination of anions in drinking water, serum and urine.  相似文献   

9.
Short permanently coated reversed-phase silica based monolithic columns have been investigated for the rapid separation of inorganic anions and cations. One 2.5 x 0.46 cm column was permanently coated with didodecyldimethylammonium (DDAB), for anion analysis; and a second 5.0 x 0.46 cm column was coated with dioctylsulphosuccinnate (DOSS), for cation analysis. The use of a single combined eluent of 2.5 mM phthalate/1.5 mM ethylenediamine, at flow rates of between 4.0 and 8.0 mL/min, resulted in the rapid separation of 8 anions (in under 100 s) and 5 cations (in under 100 s) on the above columns when used individually, with detection limits for common anions ranging from approximately 0.25 to 5 mg/L, and between 2.5 and 50 mg/L for alkaline earth metals, by direct and indirect conductivity detection, respectively. However, with both columns subsequently connected in parallel, with the eluent delivered using a flow splitter from a single isocratic pump, the simultaneous analysis of anions and cations was also possible, based on a single conductivity detector. The potential of this system for the rapid, complete screening of water samples for multiple common anions and cations is shown.  相似文献   

10.
The US Environmental Protection Agency is developing regulations for various drinking water disinfection by-products (DBPs). This effort involves developing analytical methods for the DBPs formed as a result of different disinfection treatments and collecting occurrence data for these species. Ion chromatography is one method being used to analyze drinking water samples for the following inorganic DBPs: chlorite, chlorate and bromate. These anions, however, are difficult to separate from common interfering anions of chloride, carbonate and nitrate. A method is therefore presented by which tetraborate/boric acid is used to separate these anions. Method detection limits of the order of 10 micrograms/l, using conductivity and UV detection were obtained. Stability studies of chlorite showing the effectiveness of ethylenediamine as a preservative and summary data for an occurrence of nitrite, nitrate and the DBP precursor bromide are presented.  相似文献   

11.
Kozaki D  Shi CH  Tanaka K  Nakatani N 《色谱》2012,30(4):361-364
To enhance the conductivity detection sensitivity of common anions(Na-anions) in electrostatic ion chromatography(EIC) by elution with water,a conductivity enhancement column packed with strong acid cation exchange resin in the H-form was inserted between an octadecyl silane(ODS)-silica separation column modified with zwitterionic surfactant(CHAPS: 3-{(3-cholamidopropyl)-dimethylammonio}propanesulfonate) and a conductivity detector.Specifically,the Na-anion pairing is converted to H-anion pairing after the EIC separation and then detected sensitively by the conductivity detector.The effects of conductivity enhancement and suppression in the EIC by the enhanced conductivity detection were characterized for the common strong acid anions such as SO2-4,Cl-,NO-3,I-and ClO-4 and weak acid anions such as F-,NO-2,HCOO-,CH3COO-and HCO-3.For the conductivity enhancement effect in the EIC,it is found that the conductivity of measured for all strong acid anions(Na-anions) was enhanced according to the theoretical conductivity predicted for H-anions and that of the measured for weak acid anions was suppressed depending on their pKa of H-anions.For the calibration linearity in the EIC,the strong acid anions were linear(r2=0.99-1.00) because the degree of dissociation is almost 1.0 over all the concentration range and that of the weak acid anions was non-linear because the degree of dissociation decreased by increasing the concentration of the weak acid anions.In conclusion,the EIC by enhanced conductivity detection was recognized to be useful only for the strong acid anions in terms of conductivity detection and calibration linearity.  相似文献   

12.
Ammonium perchlorate, a key ingredient in solid rocket propellants, has been found in ground and surface waters in a number of U.S. states, and perchlorate contamination of public drinking water wells is now a serious problem in California. Perchlorate poses a health risk and preliminary data from the U.S. EPA reports that exposure to less than 4-18 microg/l provides adequate human health protection. An improved ion chromatographic method was developed for the determination of low microg/l levels of perchlorate in ground and drinking waters based on a Dionex IonPac AS16 column, an hydroxide eluent generated using an EG40 automated eluent generator, large loop (1000 microl) injection, and suppressed conductivity detection. The method is free of interferences from common inorganic anions, linear over the range of 2-100 microg/l perchlorate, and quantitative recoveries are obtained for low microg/l levels of perchlorate in spiked ground and drinking water samples. The MDL of 150 ng/l permits quantification of perchlorate below the levels that ensure adequate health protection.  相似文献   

13.
张丽媛  费旭东  邱丰  林苗 《色谱》2015,33(2):164-168
建立了离子色谱-抑制型电导检测同时测定食品级润滑油中Cl-、NO3-、SO42- 3种代表性无机阴离子的方法。样品经50%(v/v)甲醇水溶液超声提取,离心后所得下层水相用0.22 μm混合纤维过滤膜净化,以15 mmol/L KOH溶液为淋洗液,采用抑制型电导检测器进行检测,外标法定量。在上述条件下,Cl-、NO3-、SO42- 3种无机阴离子在0.10~20.00 mg/L范围内具有良好的线性关系(R2>0.999);检出限(S/N=3)为0.01~0.03 mg/kg;在1.00、5.00、10.00 mg/kg添加水平下,实际样品中3种阴离子的加标回收率为90.0%~103.6%,相对标准偏差为2.8%~5.7%。结果表明,该方法无需燃烧、灰化油相基质等繁琐耗时的前处理过程,可以快速、准确定量测定食品级润滑油中Cl-、NO3-、SO42- 3种无机阴离子的含量,适用于润滑油等油品中痕量无机阴离子的同时分离与测定。  相似文献   

14.
浓碱中痕量阴离子的测定在化学化工和半导体工业中非常重要,而常规测定浓碱中阴离子的方法是采用分光光度法和浊度法。采用这些方法只能逐一对样品中的阴离子进行分析测定[1],不仅烦琐费时,而且测定结果往往不准确。离子色谱对于测定常规阴离子具有很高的灵敏度和较低的检出限,  相似文献   

15.
A contactless conductivity detector integrated into the capillary cassette of Agilent 3DCE equipment is described. The detector is user-friendly, compact and easily modified. The UV detector of the 3DCE equipment is available parallel with the contactless conductivity detector increasing the detection power. Two electrolyte solutions, 2-(N-morpholino)ethanesulfonic acid–histidine solution (20 mM, pH 6.0) and ammonium acetate (10 mM, pH 4.0), were used as the separation media for inorganic cations and organic catecholamines, respectively. The detection limit for all metal cations except barium was under 0.5 mg/l, and that for four catecholamines was ca. 10 mg/l. This last value was the same order of magnitude as achieved with parallel UV detection.  相似文献   

16.
The aim of this study was to validate two separation methods for determination of inorganic anions and cations from natural waters with capillary electrophoresis (CE) by using indirect-UV detection. The research is related to method development for screening of groundwater samples obtained in site investigations for spent fuel of the Finnish nuclear industry. In CE analysis, anions were separated in pyromellitic acid (pH 7.7) in the order bromide, chloride, sulphate, nitrite, nitrate, fluoride and dihydrogenphosphate. Cations were separated at pH 3.6 after anions using an 18-crown-6-ether solution. In these analyses, ammonium migrated first followed by potassium, calcium, sodium and magnesium. The concentrations of the ions in the natural water samples were calculated by using two or three calibration curves made using reference solutions at concentration levels of 0.5-250 mg/l. The repeatabilities of the anion and cation methods were tested using laboratory-made reference sample mixtures with high and low salt concentrations. The limits of quantification in the analyses were between 0.02 and 0.1 mg/l, depending on the ion. Concentrations of ions tested in natural waters varied from a few milligrams to tens of grams per litre.  相似文献   

17.
Non-suppressed and suppressed ion chromatography in combination with atmospheric pressure ionization mass spectrometry are compared with special respect to sensitivity for the analysis of low-molecular-mass anions. Iodate, bromate, bromide, sulfate, thiosulfate and bromide could be separated by non-suppressed ion chromatography using a low-capacity anion-exchange column and ammonium citrate as mobile phase. Absolute detection limits between 0.4 and 0.7 ng could be achieved; employing a column requiring a flow-rate of 1 ml/min for optimum performance, splitting was necessary so that only 120 μl/min entered the interface of the mass spectrometer resulting in detection limits between 0.03 and 0.06 mg/l. The same stationary phase (packed into a narrow-bore column which allowed operation without splitting) was suitable for the separation of oxyhalides in the suppressed mode with detection limits of 0.5 μg/l (50 pg) with sodium carbonate as eluent. The method was applied to the analysis of drinking water for oxyhalides. The sample pretreatment for the removal of matrix anions (sulfate, chloride and hydrogencarbonate) is described.  相似文献   

18.
High-performance capillary electrophoresis is applied to the separation of different inorganic and organic arsenic and selenium compounds. In comparison with UV-detection, an approach with conductivity detection is described expecting higher sensitivity and universality. In this case the capillary was statically modified with CTAB before the electromigration procedure. The separation was performed with an electrolyte system consisting of CHES and Triton X-100. Detection limits of 0.06 mg/L or lower were obtained for As(V) and Se(VI). Water samples of an arsenic-polluted tailing of tin mining processes were analysed for anions as well as arsenic and selenium species.  相似文献   

19.
High-performance capillary electrophoresis is applied to the separation of different inorganic and organic arsenic and selenium compounds. In comparison with UV-detection, an approach with conductivity detection is described expecting higher sensitivity and universality. In this case the capillary was statically modified with CTAB before the electromigration procedure. The separation was performed with an electrolyte system consisting of CHES and Triton X-100. Detection limits of 0.06 mg/L or lower were obtained for As(V) and Se(VI). Water samples of an arsenic-polluted tailing of tin mining processes were analysed for anions as well as arsenic and selenium species.  相似文献   

20.
研究了用硅胶整体柱和直接电导检测的离子相互作用色谱快速分析常见无机阴离子的方法。实验采用氢氧化四丁铵和邻苯二甲酸为淋洗液,讨论了包括淋洗液浓度、流速和pH对分离的影响。当以1.5 mmol/L氢氧化四丁铵和1.1 mmol/L邻苯二甲酸为淋洗液(pH 5.5),流速6 mL/min时,可以在1 min内分离Cl-、NO2-、Br-、NO3-、ClO3-、SO42-和I-7种阴离子。方法的检出限为0.3~1.9 mg/L,峰面积、峰高的相对标准偏差(RSD,n=5)分别为0.4%~2.2%和0.1%~1.5%。将该法用于测定矿泉水和地下水中的阴离子,加标回收率在97.9%~100.3%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号