首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.  相似文献   

2.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

3.
Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.  相似文献   

4.
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.  相似文献   

5.
Nonequilibrium molecular-dynamics simulations have been carried out at 276.65 K and 68 bar for the dissolution of spherical methane hydrate crystallites surrounded by a liquid phase. The liquid was composed of pure water or a water-methane mixture ranging in methane composition from 50% to 100% of the corresponding theoretical maximum for the hydrate and ranged in size from about 1600 to 2200 water molecules. Four different crystallites ranging in size from 115 to 230 water molecules were used in the two-phase systems; the nanocrystals were either empty or had a methane occupation from 80% to 100% of the theoretical maximum. The crystal-liquid systems were prepared in two distinct ways, involving constrained melting of a bulk hydrate system or implantation of the crystallite into a separate liquid phase. The breakup rates were very similar for the four different crystal sizes investigated. The method of system preparation was not found to affect the eventual dissociation rates, despite a lag time of approximately 70 ps associated with relaxation of the liquid interfacial layer in the constrained melting approach. The dissolution rates were not affected substantially by methane occupation of the hydrate phase in the 80%-100% range. In contrast, empty hydrate clusters were found to break up significantly more quickly. Our simulations indicate that the diffusion of methane molecules to the surrounding liquid layer from the crystal surface appears to be the rate-controlling step in hydrate breakup. Increasing the size of the liquid phase was found to reduce the initial delay in breakup. We have compared breakup rates computed using different long-range electrostatic methods. Use of the Ewald, minimum image, and spherical cut-off techniques led to more rapid dissociation relative to the Lekner method.  相似文献   

6.
This paper presents a systematic molecular simulation study of the heterogeneous crystal growth of methane hydrate sII from supersaturated aqueous methane solutions. The growth of sII hydrate on the [001] crystallographic face is achieved through utilization of a recently proposed methodology, and rates of crystal growth of 1 A/ns were sustained for the molecular models and specific conditions employed in this work. Characteristics of the crystals grown as well as properties and structure of the interface are examined. Water cages with a 5(12)6(3) arrangement, which are improper to both sI and sII structures, are identified during the heterogeneous growth of sII methane hydrate. We show that the growth of a [001] face of sII hydrate can produce an sI crystalline structure, confirming that cross-nucleation of methane hydrate structures is possible. Defects consisting of two methane molecules trapped in large 5(12)6(4) cages and water molecules trapped in small and large cages are observed, where in one instance we have found a large 5(12)6(4) cage containing three water molecules.  相似文献   

7.
Vibrational spectra and thermodynamic properties of ices and the cubic structure I (CS-I) clathrate hydrate have been studied by the lattice dynamics method. The phonon density of states for the empty hydrate framework and for xenon hydrate have been determined; the vibrational frequencies of the guest molecules in large and small cavities have been found. The stability of the hydrate with respect to the external pressure at low temperatures and its thermodynamic stability at temperatures around 0°C have been studied. It has been found that the empty hydrate framework is unstable in certain temperature and pressure regions. A definite degree of occupation of the large cavities by the guest molecules is necessary for the hydrate to become stable. It has been found that there is a maximum of the critical temperature at which the hydrate exists, which is a function of the external pressure.Dedicated to Dr. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

8.
We have obtained the excess chemical potential of methane in water, over a broad range of temperatures, from computer simulation. The methane molecules are described as simple Lennard-Jones interaction sites, while water is modeled by the recently proposed TIP4P/2005 model. We have observed that the experimental values of the chemical potential are not reproduced when using the Lorentz-Berthelot combining rules. However, we also noticed that the deviation is systematic, suggesting that this may be corrected. In fact, by introducing positive deviations from the energetic Lorentz-Berthelot rule to account indirectly for the polarization methane-water energy, we are able to describe accurately the excess chemical potential of methane in water. Thus, by using a model capable of describing accurately the density of pure water in a wide range of temperatures and by deviating from the Lorentz-Berthelot combining rules, it is possible to reproduce the properties of methane in water at infinite dilution. In addition, we have applied this methane-water potential to the study of the solid methane hydrate structure, commonly denoted as sI, and find that the model describes the experimental value of the unit cell of the hydrate with an error of about 0.2%. Moreover, we have considered the effect of the amount of methane contained in the hydrate. In doing so, we determine that the presence of methane increases slightly the value of the unit cell and decreases slightly the compressibility of the structure. We also note that the presence of methane increases greatly the range of pressures where the sI hydrate is mechanically stable.  相似文献   

9.
甲烷水合物导热系数是甲烷水合物勘探、开采、储运以及其他应用过程中一个十分重要的物理参数.我们采用平衡分子动力学(EMD)方法Green-Kubo理论计算温度203.15~263.15K、压力范围3~100MPa、晶穴占有率为0~1的sI甲烷水合物的导热系数,采用的水分子模型包括TIP4P、TIP4P-Ew、TIP4P-FQ、TIP4P/2005、TIP4P/Ice.研究了主客体分子、外界温压条件等对甲烷水合物导热性能的影响.研究结果显示甲烷水合物的低导热性能由主体分子构建的sI笼型结构决定,而客体分子进入笼型结构后,使得笼型结构导热性能增强,同时进入笼型结构的客体分子越多,甲烷水合物导热性能越强.研究结果还显示在高温区域(T〉TDebye/3)内不同温度作用下,所有sI水合物具有相似的导热规律.压力对导热系数有一定影响,尤其是在较高压力条件下,压力越高,导热系数越大.而在不同温度和不同压力作用过程中,密度的改变对导热系数的增大或减小几乎没有影响.  相似文献   

10.
Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.  相似文献   

11.
The decomposition process of methane hydrate in pure water and methanol aqueous solution was studied by molecular dynamics simulation. The effects of temperature and pressure on hydrate structure and decomposition rate are discussed. The results show that decreasing pressure and increasing temperature can significantly enhance the decomposition rate of hydrate. After adding a small amount of methanol molecules, bubbles with a diameter of about 2 nm are formed, and the methanol molecules are mainly distributed at the gas-liquid interface, which greatly accelerates the decomposition rate and gas-liquid separation efficiency. The radial distribution function and sequence parameter analysis show that the water molecules of the undecomposed hydrate with ordered ice-like configuration at a temperature of 275 K evolve gradually into a long-range disordered liquid structure in the dynamic relaxation process. It was found that at temperatures above 280 K and pressures between 10 atm and 100 atm, the pressure has no significant effect on hydrate decomposition rate, but when the pressure is reduced to 1 atm, the decomposition rate increases sharply. These findings provided a theoretical insight for the industrial exploitation of hydrates.  相似文献   

12.
For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.  相似文献   

13.
Neutron diffraction patterns of three argon hydrates which exist at the pressures up to 10 kbar has been studied; Rietveld refinement of their structures has been done. The phase which is stable from 1 bar to 4.6 kbar appears to be typical cubic structure II gas hydrate with variable degree of filling of the large cavities. Stoichiometry of this compound under high-pressure conditions has been determined for the first time and appears to be ArW4.5H2O and Ar·4H2O at 3.4 and 4.3 kbar, respectively. Gas hydrate existing in the pressure range of 4.6–7.7 kbar has a hexagonal structure (hexagonal structure III, so-called structure H). Refinement of the structure has shown that the best agreement between calculated and experimental pattern can be reached in the case of accommodation of five (!) argon atoms in the large cavity. Indexing of the neutron diffraction pattern of the hydrate stable in the 7.7–9.5 kbar range leads to the primitive tetragonal unit cell with parameters a = 6.342 Å, c = 10.610 Å at 9.2 kbar, which does not correspond to any known type of gas hydrates. The water framework of this structure was found by idealizing the structure of pinacol semiclathrate hydrate. This hydrate belongs to a new, earlier unknown, tetragonal structural type of gas hydrates. It contains only one type of polyhedral cavities with 14 faces. This type of polyhedrons are space-filling; two argon atoms occupy each cavity. This structure gives the first example of the gas hydrate water framework which contains only one type of polyhedral cavities.  相似文献   

14.
A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.  相似文献   

15.
Solubility data of methane in aqueous solutions of sodium dodecyl sulfate (SDS) with different concentrations were measured at ambient temperature and near hydrate conditions. The critical micelle concentration (CMC) and the number of methane molecules dissolved in each micelle of the methane + water + SDS system were calculated and compared with those of the ethylene + water + SDS system. The results demonstrated that the micelles could be formed in the SDS concentration range where an efficient promotion effect on hydrate formation was previously reported; the micelle solubilization to methane molecules was remarkable near hydrate conditions, and the ethylene molecules could be solubilized in micelles in preference to methane molecules.  相似文献   

16.
Molecular dynamic simulations have been carried out to investigate the behavior of methane hydration in Na-smectite interlayers with different layer-charge distributions and water contents under certain pressure-temperature (P-T) conditions, which is analogous to the methane hydrate-bearing marine sediments. It was found that sufficient interlayer water is necessary for coordinating with methane and forming hydrate-like structures. Methane molecules are solvated by nearly 12-13 water molecules and coordinated with six oxygen atoms from the clay surface in the interlayer of nontronite as well as in montmorillonite. The mobility of the interlayer water of smectite, which is determined by the layer-charge amount and distribution of smectite, also influences the stability of hydrate methane complexes. The tetrahedral negative charge site is closer to the surface than the octahedral charge site and is more effective in confining water than methane water molecules.  相似文献   

17.
The crystal structure of deuterated methane hydrate (structure I, space group: Pm(-)3n) was investigated by neutron powder diffraction at temperatures of 7.7-185 K. The scattering amplitude density distribution was examined by a combination of Rietveld method and maximum entropy method (MEM). The distribution of the D atoms in both D(2)O and CD(4) molecules was clarified from three-dimensional graphic images of the scattering amplitude density. The MEM results showed that there were low-density sites for the D atom of D(2)O in a particular location within the D(2)O cage at low temperatures. The MEM provided more reasonable results because of the decrease in the R factor that is attainable by this method. Accordingly, the low-density sites for the D atom of D(2)O probably exist within the D(2)O cage. This suggests that a spatial disorder of the D atom of D(2)O occurs at these sites and that hydrogen bonds between D(2)O molecules become partially weakened. With regard to the CD(4) molecules, there were high-density sites for the D atom of CD(4), and the density distribution of the C and D atoms was observed separately in the scattering amplitude density image. Consequently, the C-D bonds of CD(4) were not observed clearly because the CD(4) molecules had an orientational disorder. The D atoms of CD(4) were displaced from the line between the C and O atoms, and were located near the face center of the polygon in the cage. Accordingly, the D atoms of CD(4) were not bonded to specific O atoms. This result is consistent with the hydrophobicity of the CD(4) molecule. We also report the difference between the small and the large cages in the density distribution map and the temperature dependence of the scattering amplitude density.  相似文献   

18.
Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.  相似文献   

19.
In the present study, we report the results of a systematic investigation of cage-like water structures using the first-principles calculations. These results show that, in the case of methane hydrate, the following nucleation mechanism can be revealed. The formation of small water cavities filled with methane is the first step of the formation of methane hydrate. It is not necessary to occupy all dodecahedral cages by guest molecules. After that small cavities start to form the H-bonding network with surrounding water molecules and a small number of water molecules is enough for the formation of a stable hydrogen-bonding network. The structural information contained in such nuclei is conserved in the forming crystal. Moreover, the presence of a methane molecule between small cages is also important to prevent the adhesion of cavities. It found that the ozone molecule can also stabilize the small cage since the value of the interaction energy between the ozone guest and the water host framework is very close to that obtained for the methane case. However, ozone affects the structure of large cavities and hence, the second guest is necessary to stabilize the hydrate structure.  相似文献   

20.
Nucleation of gas hydrates remains a poorly understood phenomenon, despite its importance as a critical step in understanding the performance and mode of action of low dosage hydrate inhibitors. We present here a detailed analysis of the structural and mechanistic processes by which gas hydrates nucleate in a molecular dynamics simulation of dissolved methane at a methane/water interface. It was found that hydrate initially nucleates into a phase consistent with none of the common bulk crystal structures, but containing structural units of all of them. The process of water cage formation has been found to correlate strongly with the collective arrangement of methane molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号