首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of deuterated methane hydrate (structure I, space group: Pm(-)3n) was investigated by neutron powder diffraction at temperatures of 7.7-185 K. The scattering amplitude density distribution was examined by a combination of Rietveld method and maximum entropy method (MEM). The distribution of the D atoms in both D(2)O and CD(4) molecules was clarified from three-dimensional graphic images of the scattering amplitude density. The MEM results showed that there were low-density sites for the D atom of D(2)O in a particular location within the D(2)O cage at low temperatures. The MEM provided more reasonable results because of the decrease in the R factor that is attainable by this method. Accordingly, the low-density sites for the D atom of D(2)O probably exist within the D(2)O cage. This suggests that a spatial disorder of the D atom of D(2)O occurs at these sites and that hydrogen bonds between D(2)O molecules become partially weakened. With regard to the CD(4) molecules, there were high-density sites for the D atom of CD(4), and the density distribution of the C and D atoms was observed separately in the scattering amplitude density image. Consequently, the C-D bonds of CD(4) were not observed clearly because the CD(4) molecules had an orientational disorder. The D atoms of CD(4) were displaced from the line between the C and O atoms, and were located near the face center of the polygon in the cage. Accordingly, the D atoms of CD(4) were not bonded to specific O atoms. This result is consistent with the hydrophobicity of the CD(4) molecule. We also report the difference between the small and the large cages in the density distribution map and the temperature dependence of the scattering amplitude density.  相似文献   

2.
The specific surface area of methane hydrates, formed both in the presence and absence of sodium dodecyl sulfate (SDS) and processed in different manners (stirring, compacting, holding the hydrates at the formation conditions for different periods of time, cooling the hydrates for different periods of time before depressurizing them), was measured under atmospheric pressure and temperatures below ice point. It was found that the specific surface area of hydrate increased with the decreasing temperature. The methane hydrate in the presence of SDS was shown to be of bigger specific surface areas than pure methane hydrates. The experimental results further demonstrated that the manners of forming and processing hydrates affected the specific surface area of hydrate samples. Stirring or compacting made the hydrate become finer and led to a bigger specific surface area. Supported by the National natural Science Foundation of China (Grant Nos.20490207, 2076145, uo633003), Program for New Century Excellent Talents in University and National The National High Technology Research and Development Program of China Project.  相似文献   

3.
4.
In situ Raman spectroscopy is employed to study the phase behavior of methane hydrate at high pressure. The structure 1 of methane hydrate can be maintained up to 950 MPa at 299 K. The transformation of structure I<-->structure H+water+CH4 occurs at 880 MPa and 323 K. The structure H of methane hydrate, however, decomposes to methane and water at 960 MPa and 348 K. The initiation mechanism of methane hydrate sI is also discussed.  相似文献   

5.
Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.  相似文献   

6.
Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.  相似文献   

7.
Methane production from hydrate reservoir may induce seabed slide and deformation of the hydrate-bearing strata. The research on mechanical properties of methane hydrate is considered to be important for developing an efficient methane exploitation technology. In this paper, a triaxial test system containing a pressure crystal device was developed with the conditions to stabilize the hydrate. A series of triaxial shear tests were carried out on artificial methane hydrate specimen. In addition, mechanical characteristics of methane hydrate were studied with the strain rates of 0.1 and 1.0 mm/min, respectively, under the conditions of different temperatures (T = -5, -10, and -20 ℃) and confining pressures (P = 0, 5, 10, 15, and 20 MPa). The preliminary results show that when the confining pressure was less than 10 MPa, the increase of confining pressure leaded to the enhancement of shear strength. Furthermore, the decreasing temperature and the increasing strain rate both caused the increase in shear strength.  相似文献   

8.
The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.  相似文献   

9.
A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.  相似文献   

10.
We present molecular dynamics simulation results of a liquid water/methane interface, with and without an oligomer of poly(methylaminoethylmethacrylate), PMAEMA. PMAEMA is an active component of a commercial low dosage hydrate inhibitor (LDHI). Simulations were performed in the constant NPT ensemble at temperatures of 220, 235, 240, 245, and 250 K and a pressure of 300 bar. The simulations show the onset of methane hydrate growth within 30 ns for temperatures below 245 K in the methane/water systems; at 240 K there is an induction period of ca. 20 ns, but at lower temperatures growth commences immediately. The simulations were analyzed to calculate hydrate content, the propensity for hydrogen bond formation, and how these were affected by both temperature and the presence of the LDHI. As expected, both the hydrogen bond number and hydrate content decreased with increasing temperature, though little difference was observed between the lowest two temperatures considered. In the presence of PMAEMA, the temperature below which sustained hydrate growth occurred was observed to decrease. Some of the implications for the role of PMAEMA in LDHIs are discussed.  相似文献   

11.
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.  相似文献   

12.
Abstract

Published [11,12] proton nuclear magnetic resonance data for two substituted biphenyl molecules dissolved in nematic solvents are analysed in terms of the single conformation model and compared with the results of the maximum entropy analysis of [11]. It is shown that (i) this model, in which the number of adjustable parameters is less than the number of data, can describe very well the data for both molecules and (ii) the results of the maximum entropy analysis provide global support for this model. It is argued that the ultimate support of the single conformation model would be that introduction of a sufficiently large number of additional data in the maximum entropy analysis leads to a distribution for the dihedral angle between the two phenyl rings with two symmetrical very sharp peaks.  相似文献   

13.
Published [11,12] proton nuclear magnetic resonance data for two substituted biphenyl molecules dissolved in nematic solvents are analysed in terms of the single conformation model and compared with the results of the maximum entropy analysis of [11]. It is shown that (i) this model, in which the number of adjustable parameters is less than the number of data, can describe very well the data for both molecules and (ii) the results of the maximum entropy analysis provide global support for this model. It is argued that the ultimate support of the single conformation model would be that introduction of a sufficiently large number of additional data in the maximum entropy analysis leads to a distribution for the dihedral angle between the two phenyl rings with two symmetrical very sharp peaks.  相似文献   

14.
《Chemical physics letters》1985,117(4):352-358
The maximum entropy spectral analysis has been applied to the time domain signals obtained in a Fourier transform mass spectrometer. The method, employing at most a few hundred points from the digitized signals, is shown to produce mass spectra that are devoid of the sidelobes present in fast Fourier transformation and exhibit mass resolution that is superior to that obtained by the latter using several thousand data points.  相似文献   

15.
The direct conversion of methane to methanol at low temperatures was achieved selectively using dioxiranes 1a,b either in the isolated form or generated in situ from aqueous potassium caroate and the parent ketone at a pH close to neutrality. Results suggest that the more powerful dioxirane TFDO (1b) should be the oxidant of choice.  相似文献   

16.
In this work, the performance of nine ionic liquids (ILs) as thermodynamic hydrate inhibitors is investigated. The dissociation temperature is determined for methane gas hydrates using a high pressure micro deferential scanning calorimeter between (3.6 and 11.2) MPa. All the aqueous IL solutions are studied at a mass fraction of 0.10. The performance of the two best ILs is further investigated at various concentrations. Electrical conductivity and pH of these aqueous IL solutions (0.10 mass fraction) are also measured. The enthalpy of gas hydrate dissociation is calculated by the Clausius–Clapeyron equation. It is found that the ILs shift the methane hydrate (liquid + vapour) equilibrium curve (HLVE) to lower temperature and higher pressure. Our results indicate 1-(2-hydroxyethyl) 3-methylimidazolium chloride is the best among the ILs studied as a thermodynamic hydrate inhibitor. A statistical analysis reveals there is a moderate correlation between electrical conductivity and the efficiency of the IL as a gas hydrate inhibitor. The average enthalpies of methane hydrate dissociation in the presence of these ILs are found to be in the range of (57.0 to 59.1) kJ  mol−1. There is no significant difference between the dissociation enthalpy of methane hydrate either in the presence or in absence of ILs.  相似文献   

17.
18.
Proteins are highly complex biopolymers, exhibiting a substantial degree of structural variability in their properly folded, native state. In the presence of denaturants, this heterogeneity is greatly enhanced, and fluctuations take place among vast numbers of folded and unfolded conformations via many different pathways. To better understand protein folding it is necessary to explore the structural and energetic properties of the folded and unfolded polypeptide chain, as well as the trajectories along which the chain navigates through its multi-dimensional conformational energy landscape. In recent years, single-molecule fluorescence spectroscopy has been established as a powerful tool in this research area, as it allows one to monitor the structure and dynamics of individual polypeptide chains in real time with atomic scale resolution using F?rster resonance energy transfer (FRET). Consequently, time trajectories of folding transitions can be directly observed, including transient intermediates that may exist along these pathways. Here we illustrate the power of single-molecule fluorescence with our recent work on the structure and dynamics of the small enzyme RNase H in the presence of the chemical denaturant guanidinium chloride (GdmCl). For FRET analysis, a pair of fluorescent dyes was attached to the enzyme at specific locations. In order to observe conformational changes of individual protein molecules for up to several hundred seconds, the proteins were immobilized on nanostructured, polymer coated glass surfaces specially developed to have negligible interactions with folded and unfolded proteins. The single-molecule FRET analysis gave insight into structural changes of the unfolded polypeptide chain in response to varying the denaturant concentration, and the time traces revealed stepwise transitions in the FRET levels, reflecting conformational dynamics. Barriers in the free energy landscape of RNase H were estimated from the kinetics of the transitions.  相似文献   

19.
Solubility data of methane in aqueous solutions of sodium dodecyl sulfate (SDS) with different concentrations were measured at ambient temperature and near hydrate conditions. The critical micelle concentration (CMC) and the number of methane molecules dissolved in each micelle of the methane + water + SDS system were calculated and compared with those of the ethylene + water + SDS system. The results demonstrated that the micelles could be formed in the SDS concentration range where an efficient promotion effect on hydrate formation was previously reported; the micelle solubilization to methane molecules was remarkable near hydrate conditions, and the ethylene molecules could be solubilized in micelles in preference to methane molecules.  相似文献   

20.
Ethylene conversion under conditions of the oxidative coupling of methane has been investigated. In an empty reactor above 740°C, ethylene oxidation occurs at a higher rate and its main product is carbon monoxide. Filling the reactor with an inert material (quartz) or a NaWMn/SiO2 catalyst leads to a marked decrease in the ethylene conversion rate. Addition of methane to the reaction mixture dramatically slows down ethylene conversion rate and increases the C3 hydrocarbon content of the reaction products. The kinetics of ethylene oxidation in the presence of methane over the NaWMn/SiO2 catalyst is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号