首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
The spectroscopic properties of a new chlorophyll derivate photosensitizer(CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti:sapphire laser.The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm.The normalized fluorescence spectra of CDP in tetrahydrofuran(THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands(675 nm).The life-times of two-and one-photon induced fluorescence of this molecule are of the order of 5.0 ns.By comparing the data it is shown that there is some difference between the two lifetimes,but the differ-ence is less than one nanosecond.The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ′2 ≈ 31.5×10-50 cm4·s·photon-1.The results of two-photon photodynamic therapy(TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment.Our results indicate that the two-photon-induced photophysical,photo-chemical and photosensitizing processes of CDP may be basically similar to those of one-photon ex-citation.These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers' effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.  相似文献   

2.
A novel capacitive sensor for pazufloxacin mesilate (pazufloxacin) determination was developed by electropolymerizing p-aminobenzene sulfonic (p-ABSA) and molecularly imprinted polymers (MPs), which was synthesized through thermal radical copolymerization of metharylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of pazufloxacin template molecules, on the gold electrode surface. Furthermore, 1-dedecanethiol was used to insulate the modified electrode. Alternating current (ac) impedance experiments were carried out with a Model IM6e to obtain the capacitance responses. Under the optimum conditions, the sensor showed linear capacitance response to pazufloxacin in the range of 5 ng·mL−1 to 5 μg·mL−1 with a relative standard deviation (RSD) 5.3% (n=7) and a detection limit of 1.8 ng·mL−1. The recoveries for different concentration levels of pazufloxacin samples varied from 94.0% to 102.0%. Electrochemical experiments indicated the capacitive sensor exhibited good sensitivity and selectivity and showed excellent parameters of regeneration and stability. Supported by the National Natural Science Foundation of China (Grant No. 20675064), the Natural Science Foundation of Chongqing City (Grant No. CSTC-2004BB4149 and 2005BB4100) and High Technology Project Foundation of Southwest University (Grant No. XSGX02).  相似文献   

3.
Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2 , both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH can be changed into neutral radicals by deprotonation with a pK a value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol−1·s−1. NGSH also can be oxidized by SO4 −· with a rate constant of 1.76×109 dm3·mol−1·s−1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment. The same contribution to the work Supported by the National Natural Science Foundation of China (Grant Nos. 30570376 and 50673078) and Shanghai Project (Grant Nos. 06JC14068 and 08ZZ21)  相似文献   

4.
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6′-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3′-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer. Moreover, polymer PFHPNa showed higher fluorescence quenching toward large biomolecules than PFPPNa. The corresponding Stern-Volmer (K sv) value of polymer PFHPNa was determined to be 2.1×108 M−1 for cytochrome c. It could be used as a sensitive and selective fluorescence sensor for protein cytochrome c. Supported by the National Natural Science Foundation of China (Grant Nos. 20574067 & 50633040), the Science Fund for Creative Research Groups (Grant No. 20621401), and the 973 Project (Grant No. 2002CB613402)  相似文献   

5.
Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmol.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura- tio...  相似文献   

6.
The enthalpies of complexation between N,N-bis(carboxymethyl)aspartic acid (H4Y) and the Pb2+ ion at 298.15 K were determined from calorimetric data for a wide range of the ionic strengths (KNO3). The thermodynamic characteristics ΔH, ΔG, and ΔS, of formation of the complexes PbHY and PbY2− were calculated for zero and fixed ionic strengths. The results obtained were interpreted.  相似文献   

7.
N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The kinetic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1−α)1/3−1]−1, 203.75 kJ·mol−1 and 1017.95s−1, respectively. The values of ΔS , ΔH and ΔG of the reaction are 94.28 J·mol−1·K−1, 203.75 kJ·mol−1 and 155.75 kJ·mol−1, respectively. Supported by the National Natural Science Foundation of China (Grant No. 20106009)  相似文献   

8.
An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen=1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN·m−1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(II) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(II) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(III) complex in the Clay-Ru film by GMP. Supported by the National Natural Science Foundation of China (Grant Nos. 20471043 and 20843007), Zhejiang Provincial Natural Science Foundation (Grant Nos. Y404118 and Y408177), the “151” Distinguished Person Foundation of Zheji-ang Province of China, Zhejiang Technology Project Foundation (Grant No. 2007C21134) and Wenzhou Technology Project Foundation (Grant No. N2004B040)  相似文献   

9.
Alternate adsorption of positively charged colloid-Au nanoparticles (nano-Au⊕) and negatively charged hemoglobin (Hb) on L-cysteine (L-cys) modified gold electrode resulted in the assembly of {Hb/nano-Au⊕}n layer-by-layer films/L-cys modified gold electrode. The nano-Au⊕ was characterized by transmission electron micrograph (TEM) and microelectrophoresis. The modified electrode interface morphology was characterized by electrochemical impedance spectroscopy (EIS), atomic force mi- croscopy (AFM), cyclic voltammograms (CV) and chronoamperometry. Direct electron transfer between hemoglobin and gold electrodes was studied, and the apparent Michaelis-Menten constant ( km app) of the modified electrode was evaluated to be 0.10 mmol·L?1. Moreover, the higher activity of proteins in the nano-Au⊕ films could be retained compared with the electropolymerization membrane, since the pro- teins in nano-Au⊕ films retained their near-native structure. Direct electron transfer between hemoglo- bin and electrode and electrochemically catalyzed reduction of hydrogen peroxide on a modified elec- trode was studied, and the linear range was from 2.1×10-8 to 1.2 ×10?3 mol·L-1 (r = 0.994) with a detection limit of 1.1×10-8 mol·L-1 H2O2.  相似文献   

10.
A new tripodal rhodamine B derivative 2 was designed and synthesized by tripodal trialdehyde and rhodamine B hydrazide for the first time. This derivative could be used as a fluorescent chemosensor for the selective and sensitive determination of copper(II) in Tris-HCl buffer and ethanol aqueous mixed media. Under the optimum conditions described herein, fluorescence enhancement at 557/577 nm was linearly related to the concentration of copper(II) in the range of 0.10 to 10.00×10−5 mol·L−1, with a correlation coefficient of R 2=0.9964 (n=15) and a detection limit of 1.129×10−7 mol·L−1 (the relative standard deviation for five repeated measurements at 4.00×10−5 mol·L−1 Cu(II) was 2.2%). The absorbance measurements at 557 nm were linearly related to the concentration of Cu(II) in the range of 0.50 to 25.00×10−5 mol·L−1, with a correlation coefficient of R 2=0.9948 (n=13) and a detection limit of 3.338×10−7mol·L−1. Supported by the Foundation of the Governor of Guizhou Province, China (Grant No. 200617) and the Talented Person Foundation of Guizhou University (Grant No. 2007039)  相似文献   

11.
A novel calix[4]arene derivative with pyrene fluorophores at the upper rim and tetraester ionophores at the lower rim was synthesized in six steps, and its structure was proved by NMR and ESI-MS spectroscopies. Furthermore, the chemosensing behavior of the host compound for alkali and alkaline earth metal ions was investigated by fluorescence spectroscopy. The obtained results show that the calixarene host can selectively bind sodium ion with the complexation stability constant of 2190 mol−1·L. The complexation with sodium ion can pronouncedly induce the excimer emission to decrease and the monomer emission to increase, whereas the addition of the other alkali and alkaline earth metal ions does not cause appreciable changes in the fluorescence spectrum of the host compound. The present calix[4]arene derivative displays potential application as fluorescent chemosensor for sodium ion. Supported by the National Natural Science Foundation of China (Grant Nos. 20421202, 20673061 & 20703025) and the 111 Project (Grant No. B06005)  相似文献   

12.
PolySchiff base containing triphenylamine has been synthesized by polycondensation and character-ized by FT-IR,NMR,UV-visible spectrometer. Measurements of the third-order optical nonlinear sus-ceptibility χ(3) by Z-scan technique have shown that the large nonlinearity is dominated by the two-photon absorption in PSB. The sign and size of real part Reχ(3) ,nonlinear refractive index n2 have been measured with the condition of 532 nm,8 ns-duration pulses to be -1.23×10-10 esu,-3.06×10-12 esu;nonlinear absorption index β and size of image part Imχ(3) to be 3.63×10-10 m/W,1.15×10-11 esu,respec-tively,so the third-order nonlinear susceptibility χ(3) is 1.19×10-11 esu. The value is larger than other polymers reported. PSB is self-focusing material and has potential application in nonlinear optic field.  相似文献   

13.
The atmospheric deposition fluxes of 7Be, 210Pb and 210Po at Xiamen were measured. The samples were collected from March 2004 to April 2005 and the sampling period was one month. The 7Be and 210Pb activity were measured using HPGe γ-spectrometer after concentration using Fe(OH)3 co-precipitation method. The 210Po was counted with an α-spectrometer after the sample was digested and spontaneous plated onto a silver planchet. At Xiamen, the atmospheric deposition fluxes of 7Be varied between 0.11 and 2.93 Bq·m−2·d−1 and the average was 1.64 Bq·m−2·d−1; 210Pb fluxes varied between 0.04 and 0.85 Bq·m−2·d−1, and the average was 0.51 Bq·m−2·d−1; 210Po fluxes varied between 0.002 and 0.133 Bq·m−2·d−1, and the average was 0.061 Bq·m−2·d−1. There were positive correlations between the deposition fluxes of 7Be, 210Pb or 210Po and the amount of precipitation. The residence time of aerosols varied between 6.0 and 54.0 days with a mean of 27.1 days, which were calculated by 210Po/210Pb fluxes ratios.  相似文献   

14.
A single anthryl appended meso-tetraphenylporphyrin (TPP) dyad has been synthesized and applied in fluorescence sensing of iodine based on the intramolecular excitation energy transfer. The molecular recognition of the sensor is based on the interaction of iodine with inner anthracene moiety of the dyad, while the signal reporter for the recognition process is the TPP fluorescence quenching. Because the emission spectrum of anthracene is largely overlapped with the Soret band absorption of TPP, intramolecular excitation energy transfer interaction occurs between the donor, anthracene and acceptor, TPP. This energy transfer leads to TPP fluorescence emission by excitation of anthracene. The sensor was constructed by immobilizing the dyad in a plasticized poly(vinyl chloride) (PVC) membrane. The sensing membrane shows higher sensitivity compared to the sensors by using anthracene, TPP, or a mixture of anthracene and TPP as sensing materials. Under the optimum conditions, iodine in a sample solution can be determined from 2.04 to 23.6 mmol·L−1 with a detection limit of 33 nmol·L−1. The sensing membrane shows satisfactory response characteristics including good reproducibility, reversibility and stability, as well as the short response time of less than 60 s. Except for Cr2O72− and MnO4, other common metal ions and anions in foodstuff do not interfere with iodine determination. The proposed method was applied in the determination of iodine in table salt samples. The results agree well with those obtained by other methods. Supported by the National Outstanding Youth Science Foundation of China (Grant No. 20525518), the National Natural Science Foundation of China (Grant No. 20775005), and the National Natural Science Foundation of Hunan province (Grant No. JJ076021)  相似文献   

15.
Solubility product (Lu(OH)3(s)⇆Lu3++3OH) and first hydrolysis (Lu3++H2O⇆Lu(OH)2++H+) constants were determined for an initial lutetium concentration range from 3.72·10−5 mol·dm−3 to 2.09·10−3 mol·dm−3. Measurements were made in 2 mol·dm−3 NaClO4 ionic strength, under CO2-free conditions and temperature was controlled at 303 K. Solubility diagrams (pLuaq vs. pC H) were determined by means of a radiochemical method using 177Lu. The pC H for the beginning of precipitation and solubility product constant were determined from these diagrams and both the first hydrolysis and solubility product constants were calculated by fitting the diagrams to the solubility equation. The pC H values of precipitation increases inversely to [Lu3+]initial and the values for the first hydrolysis and solubility product constants were log10 β* Lu,H = −7.92±0.07 and log10 K*sp,Lu(OH)3 = −23.37±0.14. Individual solubility values for pC H range between the beginning of precipitation and 8.5 were S Lu3+ = 3.5·10−7 mol·dm−3, S Lu(OH)2+ = 6.2·10−7 mol·dm−3, and then total solubility was 9.7·10−7 mol·dm−3.  相似文献   

16.
The ability of living filamentous cells of the cyanobacterium Oscillatoria homogenea to separate stable strontium and 90Sr from aqueous solution is demonstrated in this study. On a basis of filamentous cell biovolume, the removal were 43.78 nM·ml·(mm3)−1 and 3129.48 mBq·ml·(mm3)−1 after 240 hour incubation. The optimum pH for strontium uptake is 9±0.3. The increasing biovolume of the blue-green alga elevates sorption. In the liquid culture containing 21.2 mm3·ml−1 filamentous cells and 1000 nM·ml−1 initial strontium concentration, the maximum strontium removal was 455.34 nM·ml·(mm3)−1. At 1200 Lux illumination, the maximum removal value was 58.62 nM·ml·(mm3)−1, and at the initial strontium concentration of 6590 nM·ml−1, 235.40 nM·ml·(mm3)−1 removal was observed. The experimental data fitted to Langmuir isotherm and the model parameters and correlation coefficient (R 2) were q max = 7.143 μg·(mm3)−1, b = 0.003 and 0.99, respectively.  相似文献   

17.
Zigetang Lake located in the central Tibetan Plateau was selected for the purpose of understanding of recent sedimentation rates. Based on 137Cs dating marker, the sediment rate was 0.077 cm·yr−1. The sedimentation rate was calculated to be 0.071 cm·yr−1 and 0.029 g·cm−2·yr−1 on the basis of 210Pb CIC model. 210Pb CRS model was also used for understanding of recent sedimentation change. The sediment accumulation rates for the CRS model ranged from 0.022 to 0.038 g·cm−2·yr−1 with an irregular high value of 0.12 g·cm−2·yr−1 around 1932 at Zigetang Lake core in the past eighty years.  相似文献   

18.
5-HT1A receptor is associated with a variety of pathophysiology of neuropsychiatric disorders. Accordingly, we have synthesized a new 5-HT1A receptor ligand (HYNIC-MPP4) and labeled it with 99mTc using N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) as coligand. 99mTc-HEDTA/HYNIC-MPP4 was prepared under pH 6 at room temperature. Biodistribution of 99mTc-HEDTA/HYNIC-MPP4 in normal mice showed that this complex had moderate brain uptake (0.60% ID·g−1 at 2 min p.i.) and good retention. The hippocampus had the highest radioactivity uptake at 2 min p.i. (1.84% ID⋆g−1). The ratio of Hipp/CB was 3.1 at 2 min p.i. and increased to 4.4 at 60 min p.i. After blocking with 8-hydroxy-2-(dipropylamino) tetralin, the uptake of hippocampus was decreased significantly from 1.84% ID·g−1 to 0.53% ID·g−1 at 2 min p.i., while the cerebellum had no significant decrease. This 99mTc complex could be a potent agent for 5-HT1A receptor imaging. Supported by the National Natural Science Foundation of China (Grant No. 20401004) and the Analysis and Test fund of Beijing Normal University  相似文献   

19.
An amperometric glucose biosensor was developed based on the immobilization of glucose oxidase in the organically modified silicate (ormosil)-polyvinyl acetate (PVA) matrix onto a Prussian Blue (PB)-modified glassy carbon electrode. A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3, K3[Fe(CN)6] and ethylenediamine tetraacetic acid (EDTA) under cyclic voltammetric (CV) conditions. The effects of the potential range of CV conditions, electrolyte cations, applied potential, pH, temperature and co-existing substances were investigated. The detection limit of the glucose biosensor was 8.1 μmol·L−1 (S/N = 3) with a linear range from 20 μmol·L−1 to 2 mmol·L−1 (R = 0.9965). The biosensor presented a fast response and good selectivity. Additionally, excellent reproducibility and stability of the biosensor were observed. Supported by the National High Technical Development Project (863 project) Foundation (Grant No. 2006AA09Z160) and the National Natural Science Foundation of China (Grant No. 20775064)  相似文献   

20.
Soil and meadow grass were sampled in the whole territory of Lithuania in 1992–2000. For the laboratory experiment, spring wheat Triticum aestivum L. “Nandu” was used because its root system type is similar to that of perennial meadow grass. The 137Cs soil-to-plant transfer factor of spring wheat was determined and the results were compared with the predicted values using a compartment model of soil-to-plant transfer and with the results of the field experiment. The results of comparing the measured and calculated transfer factor using the model show rather good coincidence, however, the calculated values were overestimated. The reason for overestimation can be that the uptake rate is not influenced only by the soil-to-plant transfer. The results of the model experiment (from 0.005 m2·kg−1 to 0.053 m2·kg−1) are close to those of the field measurements for grass (from 0.013 m2·kg−1 in 1992–1995 to 0.10 m2·kg−1 in 1999–2000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号