首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential energy surface (PES) of water octamers has been explored by the scaled hypersphere search method. Among 164 minima on the PES (based on MP2/6-311++G(3df,2p)//B3LYP/6-311+G(d,p) calculations), the cubic structure with D2d symmetry has been confirmed to be the global minimum. In a thermodynamic simulation using these 164 structures, the cubic structure with S4 symmetry has the highest population at low temperature, though double rings can become dominant as temperature going up, in good accord with a recent Monte Carlo simulation using an empirical potential. A transition temperature from cubic to noncubic has significantly been underestimated when potential energy data of B3LYP/6-311+G(d,p) calculations are employed in the simulation. This serious discrepancy between the MP2 and the B3LYP results suggests an importance of dispersion interactions for discussions on thermodynamics of water octamers.  相似文献   

2.
Technical details of a new global mapping technique for finding equilibrium (EQ) and transition structures (TS) on potential energy surfaces (PES), the scaled hypersphere search (SHS) method (Ohno, K.; Maeda, S. Chem. Phys. Lett. 2004, 384, 277), are presented. On the basis of a simple principle that reaction pathways are found as anharmonic downward distortions of PES around an EQ point, the reaction pathways can be obtained as energy minima on the scaled hypersphere surface, which would have a constant energy when the potentials are harmonic. Connections of SHS paths between each EQ are very similar to corresponding intrinsic reaction coordinate (IRC) connections. The energy maximum along the SHS path reaches a region in close proximity to the TS of the reaction pathway, and the subsequent geometry optimization from the SHS maximum structure easily converges to the TS. The SHS method, using the one-after-another algorithm connecting EQ and TS, considerably reduces the multidimensional space to be searched to certain limited regions around the pathways connecting each EQ with the neighboring TS. Applications of the SHS method have been made to ab initio surfaces of formaldehyde and propyne molecules to obtain systematically five EQ and nine TS for formaldehyde and seven EQ and 32 TS for propyne.  相似文献   

3.
Full-dimensional ab initio potential energy surface is constructed for the H(7)(+) cluster. The surface is a fit to roughly 160,000 interaction energies obtained with second-order M?llerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm(-1) for the entire data set. The surface dissociates correctly to the H(5)(+) + H(2) fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H(7)(+) cluster for carrying out dynamics studies.  相似文献   

4.
Six-dimensional (6D) potential energy surfaces (PESs) of H(2)CS have been generated ab initio using the recently proposed explicitly correlated (F12) singles and doubles coupled cluster method including a perturbational estimate of connected triple excitations, CCSD(T)-F12b [T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)] in conjunction with F12-optimized correlation consistent basis sets. Core-electron correlation, high-order correlation, scalar relativistic, and diagonal Born-Oppenheimer terms were included as additive high-level (HL) corrections. The resulting 6D PESs were represented by analytical functions which were used in variational calculations of the vibrational term values below 5000 cm(-1). The best PESs obtained with and without the HL corrections, VQZ-F12(*HL) and VQZ-F12?, reproduce the fundamental vibrational wavenumbers with mean absolute deviations of 1.13 and 1.22 cm(-1), respectively. A detailed analysis of the effects of the HL corrections shows how the VQZ-F12 results benefit from error cancellation. The present purely ab initio PESs will be useful as starting points for empirical refinements towards an accurate "spectroscopic" PES of H(2)CS.  相似文献   

5.
6.
A detailed computational study is performed on the singlet potential energy surface (PES) for possible isomerization and dissociation reactions of CH(3)CHO at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) levels. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the PES for a given chemical composition. Fourteen isomers inclusive of 11 single-molecules and three "non-stabilized" oxygen-based ylides, 5 energetically favored complexes, and 79 interconversion transition states have been found on the singlet PES. Four lowest lying isomers with thermodynamic stability are also kinetically stable with respect to metastable intermediates. It was revealed that vinyl alcohols, which could be generated by the tautomerization of acetaldehyde, could undergo dissociation to form acetylene and water. In addition, recombination channels between some fragments, such as H(2)CO + (1)CH(2) and (1)CHOH + (1)CH(2), are energetically accessible via collision complex or oxygen-based ylides. Most of available unimolecular decompositions are found to be responsible for favorable hydrogen abstraction processes.  相似文献   

7.
A full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for the water dimer, (H2O)2. The CCSD(T)-PES is a very precise fit to 19,805 ab initio energies obtained with the coupled-cluster (CCSD(T)) method, using an aug-cc-pVTZ basis. The standard counterpoise correction was applied to approximately eliminate basis set superposition errors. The fit is based on an approach that incorporates the permutational symmetry of identical atoms [Huang, X.; Braams, B.; Bowman, J. M. J. Chem.Phys. 2005, 122, 044308]. The DMS is a fit to the dipole moment obtained with M?ller-Plesset (MP2) theory, using an aug-cc-pVTZ basis. The PES has an RMS fitting error of 31 cm(-1) for energies below 20,000 cm(-1), relative to the global minimum. This surface can describe various internal floppy motions, including various monomer inversions, and isomerization pathways. Ten characteristic stationary points have been located on the surface, four of which are transition structures and the rest are higher order saddle points. Their geometrical and vibrational properties are presented and compared with available previous theoretical work. The CCSD(T)-PES and MP2-DMS dissociate correctly (and symmetrically) to two H2O monomers, with D(e) = 1665.7 cm(-1) (19.93 kJ/mol). Accurate quantum calculations of the zero-point energy of the dimer (using diffusion Monte Carlo) and the monomers (using a vibrational configuration interaction approach) are reported, and these together with D(e) give a value of D0 of 1042 cm(-1) (12.44 kJ/mol). A best estimated value is 1130 cm(-1) (13.5 kJ/mol).  相似文献   

8.
An experimental and theoretical study of the photoionization energies (IE's) of Ba(H(2)O)(n) clusters containing up to n = 4 water molecules has been performed. The clusters were generated by a pick-up source combining laser vaporization with pulsed supersonic expansion, and then photoionized by radiation of 272.5-340 nm. The experimentally determined IE(e)'s for n = 1 to 4 are 4.56 ± 0.05, 4.26 ± 0.05, 3.90 ± 0.05 and 3.71 ± 0.05 eV. This cluster size dependence of IE is reproduced within ±0.06 eV employing the mPW1PW91 density-functional and CCSD(T, Full) quantum-chemical methods combined with the 6-311++G(d,p) basis set for the H and O atoms and three different relativistic effective core potentials for Ba atoms. The calculations indicate that the lowest energy hydration structures represent the most relevant contributions to both the vertical and adiabatic ionization energies. Experimental and theoretical evidence correlates with the progressive surface-delocalization of the electron from the hydration cavity around the Ba atom and suggests that the intra-cluster electron transfer is possible even for small aggregates.  相似文献   

9.
银硫二元团簇[Ag.(Ag~2S)~n]^+(n=3,4)的从头算研究   总被引:3,自引:0,他引:3  
用abinitio分子轨道限制性Hartree-Fock(RHF)和密度泛函(DFT)方法对银硫二元团簇[Ag.(AgS)~n]^+(n=3,4)的结构进行研究.结果表明,具有环状结构的团簇最为稳定.得到了相应的几何构型和电子结构,并且对这两种团簇可为硫敏化中心自由电子深陷阱的存在形式作出合理解释。  相似文献   

10.
The Gaussian-3 (G3) model chemistry method has been used to calculate the relative deltaG(o) values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3-5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20,736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.  相似文献   

11.
Isomers of protonated water clusters H(+)(H(2)O)(n) (n = 5-7) have been explored on ab initio potential energy surfaces by means of the anharmonic downward distortion following algorithm. Totally, 9, 24, and 131 isomers for n = 5, 6, and 7, respectively, were located by the automatic exploration, and all of known important isomers previously reported by conventional geometry optimization approaches have been included in the present results. Moreover, structure transitions depending on n and temperature, which were observed by experimental studies, could be reproduced via thermodynamic simulation on the basis of the superposition approach and the present isomer sets.  相似文献   

12.
Full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for H(5)O(2) (+). Tens of thousands of coupled-cluster [CCSD(T)] and second-order Moller-Plesset (MP2) calculations of electronic energies, using aug-cc-pVTZ basis, were done. The energies were fit very precisely in terms of all the internuclear distances, using standard least-square procedures, however, with a fitting basis that satisfies permutational symmetry with respect to like atoms. The H(5)O(2) (+) PES is a fit to 48 189 CCSD(T) energies, containing 7962 polynomial coefficients. The PES has a rms fitting error of 34.9 cm(-1) for the entire data set up to 110 000 cm(-1). This surface can describe various internal floppy motions, including the H atom exchanges, monomer inversions, and monomer torsions. First- and higher-order saddle points have been located on the surface and compared with available previous theoretical work. In addition, the PES dissociates correctly (and symmetrically) to H(2)O+H(3)O(+), with D(e)=11 923.8 cm(-1). Geometrical and vibrational properties of the monomer fragments are presented. The corresponding global DMS fit (MP2 based) involves 3844 polynomial coefficients and also dissociates correctly.  相似文献   

13.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

14.
We study the solvation of HC2- and O2- with acetylene ligands by means of midinfrared photodissociation spectroscopy in the CH stretching region, monitoring C2H2 evaporation upon infrared photon absorption by the parent cluster ions. Our findings are interpreted with the help of density functional theory. The infrared spectra indicate that while the binding generally occurs through ionic H bonds, there are two different classes of ligands which differ in their binding strength. This holds true for both core ions, even though their electronic structures and charge distributions are very different.  相似文献   

15.
We report a new full-dimensional potential energy surface (PES) for the water dimer, based on fitting energies at roughly 30,000 configurations obtained with the coupled-cluster single and double, and perturbative treatment of triple excitations method using an augmented, correlation consistent, polarized triple zeta basis set. A global dipole moment surface based on Moller-Plesset perturbation theory results at these configurations is also reported. The PES is used in rigorous quantum calculations of intermolecular vibrational frequencies, tunneling splittings, and rotational constants for (H2O)2 and (D2O)2, using the rigid monomer approximation. Agreement with experiment is excellent and is at the highest level reported to date. The validity of this approximation is examined by comparing tunneling barriers within that model with those from fully relaxed calculations.  相似文献   

16.
Clusters formed between a fluoride anion and several hydrogen sulfide molecules have been investigated via ab initio calculations at the MP2 level of theory, using Dunning's augmented correlation consistent basis sets. Optimised geometries, vibrational frequencies, and enthalpy changes for the ligand association reactions are presented for clusters with up to five H2S ligands interacting with a F- anion. The minimum energy structure for the 1:1 F(-)-H2S complex features proton transfer from the H2S to the F- anion, forming a planar C(s) symmetry FH...SH- structure. For the F(-)-(H2S)2 cluster, the FH...SH- core remains and is solvated by a perturbed H2S ligand. For the larger F(-)-(H2S)(3-5) clusters, in addition to the FH...SH(-)-(H2S)n cluster forms, other minima featuring a 'solvated F-' anion are predicted. Calculated infrared spectra for the minima of each cluster size are presented to aid in assigning spectra from future experimental studies.  相似文献   

17.
Hydroperoxide anion (HOO(-)), the conjugate base of hydrogen peroxide (HOOH), has been relatively little studied despite the importance of HOOH in commercial processes, atmospheric science, and biology. The anion has been shown to exist as a stable species in alkaline water. This project explored the structure of gas phase (HOO(-))(H(2)O)(n) clusters and identified the lowest energy configurations for n ≤ 8 at the B3LYP/6-311++G** level of theory and for n ≤ 6 at the MP2/aug-cc-pVTZ level of theory. As a start toward understanding equilibration between HOO(-) and HOOH in an alkaline environment, (HOOH)(OH(-))(H(2)O)(n-1) clusters were likewise examined, and the lowest energy configurations were determined for n ≤ 8 (B3LYP/6-311++G**) and n ≤ 6 (MP2/aug-cc-pVTZ). Some studies were also done for n = 20. The two species have very different solvation behaviors. In low energy (HOOH)(OH(-))(H(2)O)(n-1) clusters, HOOH sits on the surface of the cluster, is 4-coordinated (each O is donor once and acceptor once), and donates to the hydroxide ion. In contrast, in low energy (HOO(-))(H(2)O)(n) clusters, (HOO(-)) takes a position in the cluster center surrounded on all sides by water molecules, and its optimum coordination number appears to be 7 (one O is donor-acceptor-acceptor while the other is a 4-fold acceptor). For n ≤ 6 the lowest (HOOH)(OH(-))(H(2)O)(n-1) cluster lies 1.0-2.1 kcal/mol below the lowest (HOO(-))(H(2)O)(n) cluster, but the lowest clusters found for n = 20 favor (HOO(-))(H(2)O)(20). The results suggest that ambient water could act as a substantial kinetic brake that slows equilibration between (HOOH)(OH(-)) and (HOO(-))(H(2)O) because extensive rearrangement of solvation shells is necessary to restabilize either species after proton transfer.  相似文献   

18.
We report quantum diffusion Monte Carlo (DMC) and variational calculations in full dimensionality for selected vibrational states of H(5)O(2) (+) using a new ab initio potential energy surface [X. Huang, B. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005)]. The energy and properties of the zero-point state are focused on in the rigorous DMC calculations. OH-stretch fundamentals are also calculated using "fixed-node" DMC calculations and variationally using two versions of the code MULTIMODE. These results are compared with infrared multiphoton dissociation measurements of Yeh et al. [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)]. Some preliminary results for the energies of several modes of the shared hydrogen are also reported.  相似文献   

19.
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy.  相似文献   

20.
High level ab initio calculations using complete active space self-consistent field and multi reference single and double excitation configuration interaction methods with cc-pVDZ (correlation consistent polarized valence double zeta) and cc-pVTZ (triple zeta) basis sets have been performed to elucidate the reaction mechanism of the ion-molecule reaction, C2H2(1Sigmag+) + O+(4S), for which collision experiment has been performed by Chiu et al. [J. Chem. Phys. 109, 5300 (1998)]. The minor low-energy process leading to the weak spin-forbidden product C2H2+ (2Piu) + O(1D) has been studied previously and will not be discussed here. The major pathways to form charge-transfer (CT) products, C2H2+ (2Piu) + O(3P) (CT1) and C2H2+ (4A2) + O(3P) (CT2), and the covalently bound intermediates are investigated. The approach of the oxygen atom cation to acetylene goes over an energy barrier TS1 of 29 kcal/mol (relative to the reactant) and adiabatically leads the CT2 product or a weakly bound intermediate Int1 between CT2 products. This transition state TS1 is caused by the avoided crossing between the reactant and CT2 electronic states. As the C-O distance becomes shorter beyond the above intermediate, the C1 reaction pathway is energetically more favorable than the Cs pathway and goes over the second transition state TS2 of a relative energy of 39 kcal/mol. Although this TS connects diabatically to the covalent intermediate Int2, there are many states that interact adiabatically with this diabatic state and these lead to the other charge-transfer product CT1 via either of several nonadiabatic transitions. These findings are consistent with the experiment, in which charge transfer and chemical reaction products are detected above 35 and 39 kcal/mol collision energies, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号