首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From measurements of the Hα and Hβ spectral line profiles in a plasma, a method is developed which allows to separate the contributions of Doppler and Stark broadening. This method is superior to the deconvolution of Voigt profiles, in particular, when the lines are of low intensity. The electron density in the plasma can be calculated from the Stark broadening. An example is the low pressure (p ≈ 1 hPa) arc discharge of argon ion lasers which is characteristised by electron densities of approximately 1014 cm?3 at heavy particle temperatures of about 104 K. These plasma parameters lead to a broadening of the Balmer Hα and Hβ spectral lines of hydrogen, which has a low concentration within the discharge area. The spectral lines are broadened due to the electron density dependent Stark effect and the temperature responsive Doppler effect. The results are consistent with predictions of the argon ion laser modelling.  相似文献   

2.
The radial density distribution of metastable Ar(3P2) and resonant Ar(1P1) atoms is determined experimentally in two types of electrical discharges of cylindrical shape: the positive column plasma of a DC discharge and the plasma produced by an electromagnetic surface wave. The exitation and deexcitation rates for Ar(3P2) by electron collisions are determined as a function of radius from the measured radial population density profile using a population density balance equation. These rate coefficients are obtained for various electron density values on the axis. The published values for these coefficients in the positive column plasma assume that they are independent of the discharge current. In this work, it is shown that these coefficients actually decrease as the electron density increases. In a more general way, the results obtained indicate that the examination of the radial density distributions of exited atoms is a powerful method for determining the kinetics of their creation and destruction.  相似文献   

3.
Composite copper-containing carbon nanosized structures were synthesized in the plasma of a pulsed electrical discharge, initiated between two graphite electrodes in an aqueous copper chloride solution. We studied the effect of laser radiation on the morphology of the nanoparticles formed, whose properties we studied by optical absorption spectroscopy and transmission electron microscopy. We discuss the mechanisms for nanoparticle formation in a discharge submerged in a liquid, and the possibilities for laser-induced modification of the nanoparticles. We estimated the temperature of the nanoparticles when exposed to laser radiation pulses. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 372–378, May–June, 2008.  相似文献   

4.
The purpose of this paper is to study the temperature evolution during the interaction of a plasma with an insulating wall in polyethylene ((CH2) n ) and polyoxymethylene ((CH2O) n ). The plasma is initiated by means of a capacitor bank discharge in a copper fuse wire. Due to the energy release the ablation of the insulating wall produces some insulating vapours in addition to the copper vapours corresponding to the wire vaporization. Using neutral copper line intensity ratio assuming a Bo ltzmann distribution we obtain a temperature evolution from 11 000 K to 24 000 K in the first few hundreds microseconds of the discharge. For later times the copper lines are strongly self-absorbed and make impossible the diagnostic in a spectroscopic way. Hence the temperature is deduced from the comparison between the experimental and calculated electrical conductivity. So for the decrease of the current the temperature evolves from 21 000 K down to 6 000 K and depends on the p lasma density. The results and the reliability of the two methods are discussed.Received: 25 July 2003, Published online: 14 October 2003PACS: 52.25.Kn Thermodynamics of plasmas - 52.70.Kz Optical (ultraviolet, visible, infrared) measurements - 52.80.Wq Discharge in liquids and solids  相似文献   

5.
Abstract

A method for transmitting radiation of the arc plasma with multimode fused quartz fiber onto the spectrograph has been studied. The plot of the Boltzmann function in emission spectral analysis is used for measuring temperature of the arc plasma. The measured temperature of the arc plasma is 5946.6K from least square linear regression of ln[λI/(gA)] and Ei for a number of the emission line intensities of the excited copper atom. Its regression coefficient and measured precision are ?0.97% and 1.7%, respectively. The advantages of the method of the diagnostic temperature for the arc plasma are absolute measurements of the temperature, remote sensing, precision and suitable for mal-environment, such as high temperature, toxic, explosion, strong magnetic or/and electrical fields.

In addition, we have discussed the effect of the spectroscopic constants, such as transition probability, A , the statistical weight of the upper level, g , and the energy of the upper level, Ei , of copper lines on calculating temperature with a plot of the Boltzmann function in detail. The results show that the accurate measurement of the temperature for the arc plasma is obtained only when the spectroscopic constants are selected correctly.  相似文献   

6.
We have studied RF discharges as excitation mechanisms for distributed feedback (DFB) CO2 lasers. For CO2 laser plasmas the reduced electric fieldE/N has to be in a well-defined range. The reduced electric fieldsE/N of gas discharges in the narrow gaps with widths of the order of 100 m required for DFB are considerably above this range. In order to study the feasibility of these RF-excited discharges for DFB CO2 lasers we have measured the electron temperatureT e in their plasmas. From helium-line-intensity ratios we have deduced a lower limit of the electron temperatureT e of 4eV. The observed high intensities of bands of singly ionized nitrogen indicate an even higher electron temperature, but an efficient pumping of the upper laser level is not possible with an electron temperature above 2.5 eV.We have estimated the electron densityn e and the current densityj e from ratios of the intesities of forbidden and allowed helium lines. The high current densityj e is in the range of abnormal glow discharges.In the gas discharges between narrow gaps the electron oscillation amplitudex e is large than the electrode separationd. In order to replace the resulting high electron losses a high electron temperatureT e is necessary to sustain the gas discharge. Because of this high electron temperatureT e an efficient pumping of the upper laser level is not possible.  相似文献   

7.
ABSTRACT

A pulsed direct current (DC) discharge ring–shaped plasma source has been proposed using single pole magnet arrangements, including a center magnet, with magnets in the setups (a): one circle, (b): two circles, and (c): three circles. The three-dimensional (3D) magnetic flux lines profiles, gyro–radii and Hall parameters of the electrons and ions, the electrical discharge characteristics, the temporal evolutions of the ion saturation currents were investigated to characterize the proposed plasma source. The calculated electron gyro–radii, re were 0.17, 1.64, 5.82?mm for setups (a), (b), and (c), respectively. The strong ring–shaped plasma discharges was observed for all setups. The typical discharge voltages were 1.0, 0.6, and 0.6?kV for setups (a), (b), and (c), respectively. The ion saturation currents, Iisat were 1.44, 2.88, and 2.2?mA for setups (a), (b), and (c), respectively at r?=?45?mm and t?=?+10?μs. The Iisat of setup (b) is less fluctuating, whereas Iisat of setup (a) and (c) is highly variable in all positions, so that setup (b) has the best profile among the setups.  相似文献   

8.
《光谱学快报》2013,46(1-2):99-115
Boltzmann plots of both atomic and ionic chromium emission lines are investigated to compare the excitation mechanisms in four different plasmas: an argon inductively‐coupled plasma (Ar‐ICP), a nitrogen high‐power microwave induced plasma (N2‐MIP), an argon glow discharge plasma (Ar‐GDP), and a nitrogen glow discharge plasma (N2‐GDP). The plots of the atomic lines and the ionic lines give both linear relationships as well as similar excitation temperatures in the case of the Ar‐ICP, the N2‐MIP, and the N2‐GDP. It implies that a thermodynamic process such as electron collision would control their excitations. However, only in the case of the ionic‐line plot in the Ar‐GDP, a departure from linear relationship is observed and the estimated excitation temperature is rather higher than that with the atomic lines, meaning that a specific excitation mechanism exists in the Ar‐GDP. A possible explanation for these results is that a charge‐transfer collision between chromium atom and argon ion plays a dominant role in exciting highly‐lying energy levels of chromium ion, especially in the Ar‐GDP.  相似文献   

9.
We present for the first time a comprehensive analysis (both time resolved and time averaged) of the gas-discharge characteristics of a solid-state switch (IGBT) based on high average power (100?W class), high pulse repetition rate (16?kHz) copper?CHBr laser under various excitation conditions. We evaluate various discharge-plasma parameters such as the electrical inductance, electrical resistance, active laser-head voltage, active electrical power, pre-pulse electron density, and axial gas temperature by numerical processing of the measured laser head voltage?Ccurrent waveforms. For the first time, we evaluate fractional losses at various intermediate stages of the circuit elements as well as effective coupling for the laser excitation process during transfer of energy from the wall plug to the laser-discharge plasma. We conclude that irrespective of the capacitive storage input power (P in), a constant fraction of ~40% of P in is coupled into the laser-discharge plasma. With a low to moderate specific input power of 0.4?C0.7?kW/?, the tube produced 70?C110?W average output power at an efficiency of????3.2?C2.8%, respectively. The average laser performances at various P in are correlated to its time-resolved and average gas-discharge parameters such as the inter-pulse electron density and axial gas temperature.  相似文献   

10.
An investigation was made of the characteristics of the formation of a selfcontroled volume discharge for the pumping of CO2 lasers, i.e. self-sustained volume discharge (SSVD), which involved a preliminary filling of a discharge gap by an electron flux from an auxiliary-discharge plasma. We have found that this method was suitable for large interelectrode gaps, that distortion of the electric field in the gap by the space charge of the electron flux played an important role in the formation of the discharge and that the electrodes could be profiled dynamically during propagation of an electron flux through the discharge gap and a SSVD could form in systems with a strongly inhomogeneous field. High power SSVD based CO2 laser systems have been created and investigated. Another type of self-controled volume discharge without pre-ionization, i.e. a selfinitiated volume discharge (SIVD), in nonchain HF lasers with SF6−C2H6 mixtures was investigated as well in our review. We have established that, after the primary local electrical breakdown of the discharge gap, the SIVD spreads along the gap in directions perpendicular to that of the electric field by means of the successive formation of overlapping diffuse channels under a discharge voltage close to its quasi-steady state value. It is shown that, as new channels appear, the current flowing through the channels formed earlier decreases. The volume occupied by the SIVD increases with increase in the energy deposited in the plasma and, when the discharge volume is confined by a dielectric surface, the discharge voltage increases simultaneously with increase in the current. The possible mechanisms which explain the observed phenomena, namely the dissociation of SF6 molecules and electron attachment SF6 molecules, are examined. A simple analytical model, which makes it possible to describe these mechanisms at a qualitative level, was developed. High power SIVD based HF(DF) lasers have been developed and tested.  相似文献   

11.
The results of the experiments on the destruction of micron-diameter conductors by an electromagnetic pulse, which is generated in an inhomogeneous coaxial line by a high-voltage power source and has a subnanosecond front, are reported. The role of electrodynamic processes in the surface layer of microconductors and in environment in the formation of the spatial structure of the plasma channel and in the transformation of the energy of the source to the energy of radiation has been revealed. The spectral characteristics of the radiation of the plasma channel have been analyzed. It has been shown that the radiation spectrum at the time of the formation of the plasma corona is continuous. The most intense spectral lines of copper (510.554, 515.324, 521.82 nm) appear at ∼3 ns after the formation of the plasma corona. The temperature has been estimated from the ratio of the intensities of the spectral lines as T e ∼ 0.7 eV.  相似文献   

12.
The spatial inhomogeneity of pulsed atmospheric pressure discharge in argon is investigated using the electron number density Ne diagnostics procedure applied to asymmetrically broadened Ar I lines. A dedicated fitting procedure is used for describing Ar I 703.0 nm line shape recorded from argon gas discharge and H I (at 486.13 and 656.28 nm) lines recorded from Ar-H2 gas mixture discharge. The results revealed the change in Ne in both axial and radial directions. The additional Ar I lines at 614.5, 710.7, 731.2, and 731.6 nm, recorded from integral spatial radiation, are analysed as well to confirm the results from the plasma column region. The possibility of using AlO (B2+–X2+) and CN (B2+–X2+) molecular bands for gas temperature Tg measurements in this type of gas discharge source is demonstrated and Tg used as an input parameter for the Ne diagnostics procedure. For the proper identification of molecular band spectral lines, the Fortrat parabolas are constructed. The results obtained from Ar I 703.0 nm line indicate three different Ne values, with Ne1 ≈ 0.6 × 1016 cm−3, Ne2 ≈ 3.6 × 1016 cm−3, and Ne3 ≈ 19 × 1016 cm−3 measured from the plasma column. These Ne values increase in the cathode and anode region.  相似文献   

13.
New understanding of mechanism of the runaway electrons beam generation in gases is presented. It is shown that the Townsend mechanism of the avalanche electron multiplication is valid even for the strong electric fields when the electron ionization friction on gas may be neglected. A non-local criterion for a runaway electron generation is proposed. This criterion results in the universal two-valued dependence of critical voltage U cr on pd for a certain gas (p is a pressure, d is an interelectrode distance). This dependence subdivides a plane (U cr , pd) onto the area of the efficient electron multiplication and the area where the electrons leave the gas gap without multiplication. On the basis of this dependence analogs of Paschen’s curves are constructed, which contain an additional new upper branch. This brunch demarcates the area of discharge and the area of e-beam. The mechanism of the formation of the recently created atomospheric pressure subnanosecond e-beams is discussed. It is shown that the beam of the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the anode. In this case a basic pulse of the electron beam is formed according to the non-local criterion of the runaway electrons generation. The role of the discharge gap preionization by the fast electrons, emitted from the plasma non-uniformities on the cathode, as well as a propagation of an electron multiplication wave from cathode to anode in a dense gas are considered.  相似文献   

14.
The surface topography and structure of copper layers exposed to multiphase plasma jets of products of electrical explosion of molybdenum and copper foils are studied using profilometry and scanning electron and light microscopy. Such treatment allows deposition of either layered coatings or alloyed composite layers. It is found that the surface layer roughness parameter is R a = 3.2−4.0 μm. The thickness of some copper and molybdenum layers of coatings is 15–20 μm. Electroexplosive alloying produces layers 25 μm thick. Sizes of copper inclusions in the molybdenum matrix near the surface of such layers vary from 30 nm to 1–2 μm.  相似文献   

15.
This paper investigates a plasma discharge driven by a 13.56 MHz radio frequency (RF) power supply at atmospheric pressure, in which a copper wire is inserted in the discharge tube for the deposition of Cu films. The results show that the jet plasma formation originates from the discharge between the copper wire and induction coil because of its electrostatic field. The axial distribution of the plasma parameters in the RF plasma jet, namely the gas temperature, excitation temperature, and electron number density, is determined by diatomic molecule OH fitting, Boltzmann slope, and Hβ Stark broadening, respectively. The discharge current significantly declines when a small amount of hydrogen is added to the argon as the plasma‐forming gas, and the gas temperature of discharge plasma increases considerably.  相似文献   

16.
The emission intensities and the signal‐to‐background ratios (SBRs) of copper emission lines in the wavelength range 200–360 nm were observed from a medium‐voltage spark discharge plasma when argon or helium was employed as the surrounding gas. The observed copper spectra comprised Cu(I) lines having excitation energy of 3.8–9.3 eV, and Cu(II) lines assigned to three different transitions: 3d 84p–3d 84s transition (excitation energy of 8.2–9.2 eV), 3d 85s–3d 84p transition (13.4–13.6 eV), and the 3d 84d–3d 84p transition (14.2–14.8 eV). The Cu(I) lines have much smaller intensities in the helium plasma compared with the argon plasma, whereas the Cu(II) lines have similar intensities between both plasmas. The SBRs of some ionic copper lines are larger in the helium plasma compared with the argon plasma. Therefore, when an ionic line has to be measured in the analytical applications, the helium plasma should be recommended.  相似文献   

17.
The study deals with the effect of an applied transverse magnetic field on the dynamics and parameters of the focused and expanded plasma in a coaxial discharge. The experimental results were found with a 3 kJ Plasma focus device of a Mather geometry. The discharge takes place in hydrogen gas with base pressure of 0.5 Torr. The experiments are conducted with a 10 kV bank voltage, which corresponds to 100 kA peak discharge current with rise time 8 μs. Helmholtz magnetic coils are placed outside the expansions chamber to produce a transverse magnetic field with intensity 280 G perpendicular to the plasma expanded from the coaxial electrodes. The investigations have shown that the plasma flow along the expansion chamber axis is restricted when applying the externally transverse magnetic field and the maximum axial velocity of the expanded plasma is decreased by 33%. X-ray probe has been used to measure the focused plasma electron temperature (Te). The experimental results and the calculations showed that Te is decreased from 2.2 keV to 800 eV with the application of a transverse magnetic field. The expanded plasma electron temperature and density have been measured by an electric double probe, the results cleared that the expanded plasma electron temperature is decreased by 2.6 times while its density is increased by 9 times, when a transverse magnetic field is applied.  相似文献   

18.
The electrical and optical characteristics of a longitudinal dc glow discharge in a cylindrical discharge tube in mixtures of helium with saturated water vapor at room temperature are investigated. In the UV range, a broad band with a maximum at λmax=309.6 nm and Δλ=9 nm prevails. The Hα 656.3-nm, Hβ 486.1-nm, and HeI lines in the range 440–670 nm are the main diagnostic spectral lines. The helium partial pressure and the glow discharge current are optimized to achieve the maximum intensities of the 309.6-nm band and HeI and HI spectral lines. The results obtained are of interest for the development of an ecologically safe radiation source based on the products of the decomposition of water molecules and clusters in plasma.  相似文献   

19.
The plasma region under investigation is separated from the discharge region by a mesh grid. Plasma potential and electron number densities and electron temperatures under bi‐Maxwellian approximation for electron distribution function of the multi‐dipole argon plasma are measured. The cold electrons in the diffusion region are produced by local ionization. The hot electrons are the ionizing electrons behaving as Maxwellian. The electron trapping process in the discharge region is produced by potential well due to positive plasma potential with respect to the anode and by a repulsive grid. The dependence of ratios of the density of the hot to the cold electrons NE (=Neh/Nec) and hot to cold electron temperature T(=Teh/Tec) in the diffusion region on the depth of the potential well has been investigated. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The electron velocity distribution function (EVDF) in an anisotropic plasma is investigated using both the probe method and the magnetic-polarization Hanle techniques. In a helium beam-plasma discharge, the moments of the anisotropic EVDF are measured and the rate constant is determined for the disalignment of helium atoms in the 41 D 2 state due to collisions with charged particles. A new method for investigating anisotropic properties of distant plasma objects unavailable for contact diagnostics is tested experimentally. The EVDF, the cross sections for the alignment of the total angular moments of the excited helium atoms by electron impact, and the degree of the electron pressure anisotropy are measured. An advantage of the method proposed is the possibility of directly measuring the EVDF anisotropy in distant plasma objects, which until now has been estimated only theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号