共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
在具有顶发射结构的白光有机发光二极管(TWOLED)中, 稳定的纯白光比较难以实现. 本文在蓝光/红光/蓝光三发光层基础上, 进一步采用了红光层梯度掺杂的方式提高TWOLED的性能. 制备了一系列的梯度掺杂器件, 通过与均匀掺杂器件的对比, 详细分析了梯度掺杂对发光层中载流子漂移以及激子扩散的影响, 解释了白光稳定性提高的物理机理. 此外, 顶发射器件中的微腔效应也是影响白光光谱的一个重要因素, 本文利用微腔理论计算分析了微腔共振对器件光谱的影响. 相似文献
3.
采用激光诱导掺锌的方法提高了常规GaN基外延片p-GaN层的空穴浓度,并将它制备成小功率白光发光二极管(LED).对其光电性能做了详细的测量并进行了加速老化实验和分析.结果表明,与常规LED相比,经过激光诱导p-GaN层掺锌LED的光电性能获得了明显改善:正向工作电压VF从3.33V降到3.13V,串联电阻从30.27Ω降到20.27Ω,室温下衰退系数从1.68×10-4降到1.34×10-4,老化1600h后的反向漏电流从超过0.2μA降为不超过0.025μA,器件的预测寿命延长了41%.器件光电性能改善的主要原因是激光诱导掺锌使LED的p-型欧姆接触改善和热阻降低所致. 相似文献
4.
为了研究有机发光二极管(OLED)中发光特性与材料能带结构的关系,把不同的Ir配合物染料掺杂到结构相同的OLED器件中。OLED结构为ITO/NPB/CBP∶染料/TPBi/Mg∶Ag/Ag,染料分别为Ir(MDQ)2(acac)、Ir(ppy)3和Firpic。实验表明,这3种染料对应的掺杂器件分别发红光、绿光和蓝光。3个器件的阈值电压基本一致((6为了研究有机发光二极管(OLED)中发光特性与材料能带结构的关系,把不同的Ir配合物染料掺杂到结构相同的OLED器件中。OLED结构为ITO/NPB/CBP:染料/TPBi/Mg:Ag/Ag,染料分别为Ir(MDQ)2(acac)、Ir(ppy)3和Firpic。实验表明,这3种染料对应的掺杂器件分别发红光、绿光和蓝光。3个器件的阈值电压基本一致((6±0.1) V),但是,在100 cd/m2亮度下,绿光器件外量子效率最高(7.64%),蓝光器件外量子效率(5.65%)与绿光相近,红光器件外量子效率最低(2.75%)。分析认为,由于染料的掺杂浓度低,器件结构和载流子传输特性变化小,因而掺杂对阈值电压影响小;CBP与掺杂染料间存在能量转移,红色染料能级差小,非辐射跃迁几率大,发光效率最低;相比于绿光,蓝色染料能级差大,跃迁几率小,因此发光效率比绿光低。实验还发现,染料的发光波长与其能级差相比有红移现象,分析认为,这是由激发态能量振动弛豫和系间窜越过程形成的。 相似文献
5.
将蓝光激基复合物mCP∶PO-T2T和磷光超薄层结合,分别制备了基于Ir(pq)2acac(~0.5 nm)/mCP∶PO-T2T/Ir(pq)2acac(~0.5 nm)结构的双色互补色和基于Ir(ppy)3(~0.5 nm)/mCP∶PO-T2T/Ir(pq)2acac (~0.5 nm)结构的三基色非掺杂白光有机发光二极管(White organic light emitting diodes, WOLED),以探索超薄层在激基复合物中的应用。所制备的双色互补色WOLED,其最大电流效率、功率效率和外量子效率分别为46.1 cd/A、43.9 lm/W和22.2%,而三基色WOLED所实现的最大电流效率、功率效率和外量子效率分别为66.8 cd/A、63.5 lm/W和24.2%。研究分析表明,从高能的蓝光激基复合物发光层向两侧低能的红光和绿光磷光超薄层有效的能量传递是实现非掺杂WOLED高效率的原因。 相似文献
6.
《发光学报》2021,42(5)
有机发光二极管(OLED)器件性能的提高一直是有机电致发光领域备受关注的研究课题之一,通过优化OLED器件中的载流子平衡是提高OLED器件性能的一个非常重要的手段。但是,调控空穴传输层或电子传输层中的分子取向,从而优化器件中的载流子平衡未被关注。本文通过对空穴传输层进行不同温度的退火处理来改变空穴传输层中的分子取向,研究分子取向对其空穴迁移率和OLED器件性能的影响。研究发现,退火温度的升高使得空穴传输层中具有垂直取向的分子的比例增加,促进了空穴迁移率的提高。当把具有不同分子取向的空穴传输层应用于OLED器件时,可以清楚地观察到载流子平衡因子对器件性能的影响。 相似文献
7.
以p型硅和苝四甲酸二酐 (perylene-3,4,9,10-tetracarboxylic acid dianhydride,PTCDA)为异质结,梳状金(Au)薄膜作为顶电极和光入射窗口制备了光敏二极管。研究表明,PTCDA的厚度和Au电极的厚度对光敏二极管的光响应度有很大的影响。对比不同PTCDA厚度的器件性能,在PTCDA厚度为100 nm时,光响应度最高达到0.3 A/W。进而采用最优化的100 nm厚的PTCDA薄膜制备硅基光敏二极管,对比不同Au电极厚度的器件性能。在Au厚度为20 nm时,器件的光响应度达到最优化的0.5 A/W。 相似文献
8.
相对于传统的无机半导体材料,有机半导体材料特别是有机电子传输材料的载流子浓度和迁移率较低,从而影响了有机发光器件的亮度、效率等性能.为了提高有机发光器件器件性能必须增强电子注入和传输能力,对有机电子传输材料进行n型电学掺杂能够有效地提高电子的注入和传输能力.本文利用Li3N作为n型掺杂剂,以掺杂层Alq3∶Li3N作为电子注入层,有效地提高了有机发光器件器件的性能,在掺杂浓度为5%,掺杂层厚度为10 nm时器件性能表现为最优.Li3N在空气中稳定,并且在较低的温度和压强下能分解产生Li原子和氮气,避免了采用金属掺杂剂如Li、Cs等材料时易受空气中水分和氧气影响的缺点,有利于工艺处理. 相似文献
9.
以p型硅和苝四甲酸二酐(perylene-3,4,9,10-tetracarboxylic acid dianhydride,PTCDA)为异质结,梳状金(Au)薄膜作为顶电极和光入射窗口制备了光敏二极管。研究表明,PTCDA的厚度和Au电极的厚度对光敏二极管的光响应度有很大的影响。对比不同PTCDA厚度的器件性能,在PTCDA厚度为100 nm时,光响应度最高达到0.3 A/W。进而采用最优化的100 nm厚的PTCDA薄膜制备硅基光敏二极管,对比不同Au电极厚度的器件性能。在Au厚度为20 nm时,器件的光响应度达到最优化的0.5 A/W。 相似文献
10.
在常规的双层绿色有机电致发光器件氧化铟锡(ITO)/N,N′-bis-(1-naphthyl)-N,N′-biphenyl-1,1′-biphenyl-4,4′-diamine(NPB)/8-hydroxyquinolinealuminum(Alq3)/Mg∶Ag的基础上,通过选择适当的空穴阻挡层材料,制备得到以NPB为发光层的蓝色发光器件,其结构为ITO/NPB/bathocuproine(BCP)/Alq3/Mg∶Ag,其最大亮度和最大流明效率分别达到2900cd/m2和0.55lm/W。电致发光谱峰位于445nm,CIE色坐标为(x=0.16,y=0.09),且二者都不随外加电压而变化;利用各功能层的能级结构,对不同结构的器件性能差异进行了分析。 相似文献
11.
Meiso YOKOYAMA 《发光学报》2011,32(1):1-6
This work presents novel field emission organic light emitting diodes(FEOLEDs) with dynode,in which an organic EL light-emitting layer is used instead of an inorganic phosphor thin film in the field emission display(FED).The proposed FEOLEDs introduce field emission electrons into organic light emitting diodes(OLEDs),which exhibit a higher luminous efficiency than conventional OLED.The field emission electrons emitted from the carbon nanotubes(CNTs) cathode and to be amplified by impact the dynode in vacuum.These field emission electrons are injected into the multi-layer organic materials of OLED to increase the electron density.Additionally,the proposed FEOLED increase the luminance of OLED from 10 820 cd/m2 to 24 782 cd/m2 by raising the current density of OLED from an external electron source.The role of FEOLED is to add the quantity of electrons-holes pairs in OLED,which increase the exciton and further increase the luminous efficiency of OLED.Under the same operating current density,the FEOLED exhibits a higher luminous efficiency than that of OLED. 相似文献
12.
有机电致发光白光器件的研究进展 总被引:4,自引:7,他引:4
在十多年的时间里,有机电致发光二极管(Organic Lightemitting Diodes,OLEDs)的研究和应用取得了长足的进展。有机电致发光器件具有许多优点,例如:自发光、视角宽、响应快、发光效率高、温度适应性好、生产工艺简单、驱动电压低、能耗低、成本低等,因此有机电致发光器件极有可能成为下一代的平板显示终端。有机电致发光白光器件因为可以用于全彩色显示和照明,已成为OLED研究中的热点。介绍了有机电致发光白光器件的研究进展,按发光的性质将白光器件分为荧光器件和磷光器件两类,按发光层数将白光器件分为单层和多层器件,对相关材料、器件结构、发光机理等方面进行了讨论。 相似文献
13.
近白色发光的有机发光二极管 总被引:1,自引:0,他引:1
制备了以8-羟基喹啉锌Znq2为发光层,苯乙烯胺衍生物SA为空穴传导层,恶二唑衍生物PBD为载流子局限层的单层双层和三层结构的有机发光二极管。研究它们的电致发光性能如电致发光光谱,电流密度电压特性和电致发光亮度电压特性等。 相似文献
14.
有机微腔绿色发光二极管 总被引:2,自引:2,他引:2
光学微腔是指尺寸在光波长量级的光学微型谐振腔。微腔结构可以使腔内物质和光场的相互作用与体材料相比发生很大变化,出现了自发辐射谱线窄化和增强等腔效应。利用这些腔效应,可以改善有机发光器件的性能。采用微腔结构,优化设计并研制了有机微腔绿色发光二极管,器件结构为Glass/DBR/ITO/NPB/Alq∶Rubrene/Alq/MgAg,获得了最大亮度40100 cd/m2、最大发光效率为6.44 cd/A、半峰全宽为28 nm的纯绿色有机微腔电致发光器件。而与之比较的无腔器件最大亮度为22580 cd/m2、最大发光效率为2.98 cd/A、半峰全宽为120 nm。相同电流密度下微腔电致发光谱的峰值发射强度是无腔器件的4.2倍。结果表明将微腔结构引入有机电致发光器件中,不但改善了发光的色纯度,而且使器件的发光效率和亮度都得到明显增强。 相似文献
15.
16.
研究了静电放电(ESD)人体模式(HBM)下的脉冲应力对有机发光二极管(OLED)的性能及寿命的影响,并讨论了相应的物理机制。对比分析了4组OLED在施加ESD放电为0,200,800,1 600 V前后的电学和光学特性,并进行了相应的寿命测试分析。研究发现,OLED器件的光谱对ESD不敏感,随着冲击电压的增大,由于静电打击对载流子的短期抑制效应,OLED的亮度出现轻微下降。在静电冲击电压为200 V和800 V时,伏安特性没有发生变化;当静电冲击电压增至1 600 V时,反向漏电有明显增加。后续的加速寿命实验表明,静电打击对器件的工作寿命没有明显的规律性影响,但是会一定程度提高非本质老化失效的概率。 相似文献
17.
有机电致发光器件量子效率测量系统的建立及其应用研究 总被引:5,自引:4,他引:5
有机电致发光器件(OLED)的量子效率是衡量器件发光性能的一个非常重要的参数,考虑到提高OLED量子效应的基本前提是能精确测得器件的量子效率。本文工作采用美国Keithley公司的系列产品,设计与组建了一套精确测量OLED量子效率的测量系统(主要由真空系统和测试系统组成)。应用本系统测量时,由测量软件通过数据采集卡来实时地对K-2400(稳压源)和K-485(微检流计)进行控制,得到流经器件的电流和器件输的光电流,再经过换算得出注入器件的电子数和从器件输出的光子数,从而能够得到器件的量子效率值,最后由计算机动态地绘制出器件的性能曲线。此外,我们还利用本测量系统对以MEH-PPV为基质的橙红色OLED进行测量,该测试样品在0.0117A/cm^2的电流密度下,测量量子效率为0.39%。 相似文献
18.
高稳定性的红色有机薄膜电致发光器件 总被引:3,自引:1,他引:3
有机薄膜电致发光作为新型的平板显示器件受到人们广泛的关注。有机发光器件研究的一个目标是发展全色显示。目前绿色和蓝色器件都实现了高亮度和长寿命。有关红色有机发光器件也有一些报道。如 C.W.Tang等报道的 DCM红光器件[1],J.Kido[2]利用稀土有机物作为红色发射体,P.E.Burrous报道的TPP掺杂[3]Y.Hamada报道的ZnTPP掺杂[4], M. A. Baldo利用PtOEp[5]都得到红光。最近 Y. Hamada报道利用rubrene作为辅助掺杂得到的红光器件色度不随电压的… 相似文献
19.
以蓝色发光材料DPVBi为基质的白色发光器件 总被引:5,自引:3,他引:5
白色有机发光器件是实现彩色平板显示的重要方案之一。利用蓝色发光材料DPVBi[4,4′—(2,2—苯乙烯基)—1,1′—联苯]掺杂红光染料DCJTB[4—氰甲烯基—2—叔丁基—6—(1,1,7,7—四甲基久洛尼定基—9—烯炔基—4H—吡喃)]作发光层制备了白色发光器件。研究了DPVBi掺杂不同浓度IDCJTB薄膜的光致发光性质,根据光致发光结果,制备了以DPVBi掺杂不同浓度DCJTB作发光层的电致发光器件,其结构为ITO/GuPc/NPB/DPVBi:DCJTB/Alq3/LiF/Al。当DCJTB质量分数为0.0008时,器件实现了白色发光(色度x=0.25,y=0.32),电致发光和光致发光的掺杂比例基本相符,表明器件的白色发光主要是由基质DPVBi向掺杂剂DCJTB的能量传递产生的。研究还发现:白色器件随电压升高,光谱中蓝色成分相对于红色成分的比例略有增加,文章对此现象进行了分析。该白光器件在14V时达到最高亮度7822cd/cm^2,在20mA/cm^2电流密度下的亮度为-489cd/cm^2,最大流明效率为1.75lm/W。 相似文献