首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nanotechnology is touted as a transformative technology in that it is predicted to improve many aspects of human life. There are hundreds of products in the market that utilize nanostructures in their design, such as composite materials made out of carbon or metal oxides. Potential risks to consumers, to the environment, and to workers from the most common passive nanomaterial—carbon nanotubes—are emerging through scientific research. Newer more active nanostructures—such as cancer therapies and targeted drug systems—are also increasing in use and are raising similar risk concerns. Governing the risks to workers is the subject of this commentary. The Occupational Safety and Health Act of 1970 grants the Occupational Safety and Health Administration the legal authority to set occupational health standards to insure that no worker suffers material impairment of health from work. However, setting a standard to protect workers from nanotechnology risks may occur some time in the future because the risks to workers have not been well characterized scientifically. Alternative risk governances—such as dynamic oversight through stakeholder partnerships, “soft law” approaches, and national adoption of international consensus standards—are evaluated in this article.  相似文献   

3.
Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required.  相似文献   

4.
The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit–risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.  相似文献   

5.
Airborne Nanostructured Particles and Occupational Health   总被引:7,自引:6,他引:1  
Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose–response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed. Disclaimer The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health  相似文献   

6.
As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.  相似文献   

7.
Nanotechnology, the design and manipulation of materials at the atomic scale, may well revolutionize many of the ways our society manufactures products, produces energy, and treats diseases. New materials based on nanotechnology are already reaching the market in a wide variety of consumer products. Some of the observed properties of nanomaterials call into question the adequacy of current methods for determining hazard and exposure and for controlling resulting risks. Given the limitations of existing regulatory tools and policies, we believe two distinct kinds of initiatives are needed: first, a major increase in the federal investment in nanomaterial risk research; second, rapid development and implementation of voluntary standards of care pending development of adequate regulatory safeguards in the longer term. Several voluntary programs are currently at various stages of evolution, though the eventual outputs of each of these are still far from clear. Ultimately, effective regulatory safeguards are necessary to provide a level playing field for industry while adequately protecting human health and the environment. This paper reviews the existing toxicological literature on nanomaterials, outlines and analyzes the current regulatory framework, and provides our recommendations, as an environmental non-profit organization, for safe nanotechnology development.  相似文献   

8.
Nanotechnology has been a key area of funding and policy for the United States and globally for the past two decades. Since nanotechnology research and development became a focus and nanoproducts began to permeate the market, scholars and scientists have been concerned about how to assess the risks that they may pose to human health and the environment. The newest generation of nanomaterials includes biomolecules that can respond to and influence their environments, and there is a need to explore whether and how existing risk-analysis frameworks are challenged by such novelty. To fill this niche, we used a modified approach of upstream oversight assessment (UOA), a subset of anticipatory governance. We first selected case studies of “active nanomaterials,” that are early in research and development and designed for use in multiple sectors, and then considered them under several, key risk-analysis frameworks. We found two ways in which the cases challenge the frameworks. The first category relates to how to assess risk under a narrow framing of the term (direct health and environmental harm), and the second involves the definition of what constitutes a “risk” worthy of assessment and consideration in decision making. In light of these challenges, we propose some changes for risk analysis in the face of active nanostructures in order to improve risk governance.  相似文献   

9.
In response to the continuing problem of noise induced hearing loss (NIHL) among mine workers, the National Institute for Occupational Safety and Health (NIOSH) has conducted numerous noise surveys in coal preparation plants. The research, consisting of worker dose monitoring, task observations, and equipment noise profiling, was completed in eight separate preparation plants. Worker dose monitoring was conducted for three shifts in most cases. Workers experiencing higher than allowable doses were task-observed for one full shift to correlate dose to noise source(s). Finally, noise levels on all floors, and in lunch rooms and control rooms, were characterized. Results indicate that only workers who routinely spend a significant portion of their shift in the plants (away from the control rooms) are susceptible to overexposure from noise. Certain pieces of equipment (screens, centrifuges, sieve bends) are the loudest primary noise sources responsible for the worker noise exposures.  相似文献   

10.
Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders’ perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated “lack of information” as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders’ reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.  相似文献   

11.
Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process.  相似文献   

12.
All natural and living systems are governed by atomic and molecular behavior at the nanoscale. Research is now seeking systematic approaches to create revolutionary new products and technologies by control of matter at the same scale. Fundamental discoveries and potential implications of nanotechnology to wealth, health and peace have captured the imagination of scientists, industry and government experts. The National Nanotechnology Initiative (NNI) has become a top national priority in science and technology in U.S. for fiscal year 2001, with a Federal nanotechnology investment portfolio of $422 million. Nanotechnology is expected to have a profound impact on our economy and society in the earlier 21st century.The vision, research and development strategy, and timeline of NNI are presented by using several recent scientific discoveries and results from industry.  相似文献   

13.
Control banding (CB) strategies offer simplified processes for controlling worker exposures in the absence of firm toxicological and exposure information. The nanotechnology industry is an excellent candidate for applying such strategies with overwhelming uncertainties of work-related health risks posed by nanomaterials. A recent survey shows that a majority of nanomaterial producers are not performing a basic risk assessment of their product in use. The CB Nanotool, used internationally, was developed to conduct qualitative risk assessments to control nanoparticle exposures. Nanotoxicology experts have requested standardization of toxicological parameters to ensure better utility and consistency of research. Such standardization would fit well in the CB Nanotool’s severity and probability risk matrix, therefore enhancing the protection of nanotechnology industry workers. This article further evaluates the CB Nanotool for structure, weighting of risk factors, and utility for exposure mitigation, and suggests improvements for the CB Nanotool and the research needed to bolster its effectiveness.  相似文献   

14.
The exposure to engineered nanomaterials (ENMs) is a new emerging risk at work due to an increase in the number of workers potentially exposed to them and the current lack of data on their health and safety risks. This paper reports the findings of a survey designed to study the safety practices employed by workers in Spanish research facilities performing tasks involving the use of ENMs at research level. A questionnaire pretested and validated by an expert panel was sent by e-mail to the target audience. The 425 surveys completed show that most of the respondents handled up to 5 different ENMs, in suspension, in small amounts during short periods of exposure. The implementation of common hygienic practices, such as the use of protection for hands and the implementation of fume hoods, is widely indicated. The selection of the preventive and protective measures does not depend on the characteristics of ENMs handled. Also, the risks posed by ENMs are widely ignored. Besides the performance of risk assessment, hygienic monitoring and the conducting of a specific health surveillance are practically non-existent although some accidents relating to ENMs were identified. In conclusion, workers’ exposure to ENMs seems to be low. Even though the best practices and preventive and protective measures reported were employed, most of the respondents could not be correctly protected. Moreover, workers do not associate the measures implemented with the nanorisks. Finally, there is a lack of proactive action underway to protect the workers, and concerns about safety are weakly evidenced.  相似文献   

15.
This article analyzes nanotechnology as an experiment in democratic deliberation, one that seems motivated both by a desire to improve deliberative democracy and to protect the technology from undue public interference. However, rather than involving amplified (overstated) risks, nanotechnology appears to involve attenuated (understated) risks. Results from a 3-year panel study are presented to illustrate the ways in which citizens form opinions about nanotechnology, supporting the assertion that public opinion about complex technology can be both reasonable and stable. Nevertheless, the authors also voice concern that, in the absence of public pressure, risk regulation may not evolve as swiftly as it should to protect both society and industry.  相似文献   

16.
Commercially available noise dosimeters do not perform properly in impulsive noise environments because they suffer from instrumentation limitations and lack metrics that characterize impulse noise. In this paper, a design concept is proposed for an impulse noise monitoring dosimeter that addresses the current dosimeter’s limited capabilities and describes the various parameters that can appropriately be used to measure and evaluate exposure to impulse noise. The design concept is based on the accurate acquisition and storage of the original impulse waveform. For data analysis (using MATLAB) and calculation of “impulse noise metrics,” National Institute for Occupational Safety and Health (NIOSH) used a prototype impulse noise dosimeter system that consisted of a Bruel&Kjaer 4136 microphone and a Panasonic Digital Audio Tape Recorder. The proposed instrument would enable collection of data for validation of presently defined and yet to be defined metrics quantifying noise-induced permanent threshold shifts (NIPTS) resulting from impulse/impact exposures. It will also enable occupational safety and health professionals to make accurate measurements of ultimately approved metrics.  相似文献   

17.
Nanotechnology has great potential to transform science and industry in the fields of energy, material, environment, and medicine. At the same time, more concerns are being raised about the occupational health and safety of nanomaterials in the workplace and the implications of nanotechnology on the environment and living systems. Studies on environmental, health, and safety (EHS) issues of nanomaterials have a strong influence on public acceptance of nanotechnology and, eventually, affect its sustainability. Oversight and regulation by government agencies and non-governmental organizations (NGOs) play significant roles in ensuring responsible and environmentally friendly development of nanotechnology. The EHS studies of nanomaterials can provide data and information to help the development of regulations and guidelines. We present research results on three aspects of EHS studies: physico-chemical characterization and measurement of nanomaterials; emission, exposure, and toxicity of nanomaterials; and control and abatement of nanomaterial releases using filtration technology. Measurement of nanoparticle agglomerates using a newly developed instrument, the Universal NanoParticle Analyzer (UNPA), is discussed. Exposure measurement results for silicon nanoparticles in a pilot scale production plant are presented, as well as exposure measurement and toxicity study of carbon nanotubes (CNTs). Filtration studies of nanoparticle agglomerates are also presented as an example of emission control methods.  相似文献   

18.
The fields of nanomedicine, risk analysis, and decision science have evolved considerably in the past decade, providing developers of nano-enabled therapies and diagnostic tools with more complete information than ever before and shifting a fundamental requisite of the nanomedical community from the need for more information about nanomaterials to the need for a streamlined method of integrating the abundance of nano-specific information into higher-certainty product design decisions. The crucial question facing nanomedicine developers that must select the optimal nanotechnology in a given situation has shifted from “how do we estimate nanomaterial risk in the absence of good risk data?” to “how can we derive a holistic characterization of the risks and benefits that a given nanomaterial may pose within a specific nanomedical application?” Many decision support frameworks have been proposed to assist with this inquiry; however, those based in multicriteria decision analysis have proven to be most adaptive in the rapidly evolving field of nanomedicine—from the early stages of the field when conditions of significant uncertainty and incomplete information dominated, to today when nanotoxicology and nano-environmental health and safety information is abundant but foundational paradigms such as chemical risk assessment, risk governance, life cycle assessment, safety-by-design, and stakeholder engagement are undergoing substantial reformation in an effort to address the needs of emerging technologies. In this paper, we reflect upon 10 years of developments in nanomedical engineering and demonstrate how the rich knowledgebase of nano-focused toxicological and risk assessment information developed over the last decade enhances the capability of multicriteria decision analysis approaches and underscores the need to continue the transition from traditional risk assessment towards risk-based decision-making and alternatives-based governance for emerging technologies.  相似文献   

19.
Nanotechnology’s effects on labor and employment have received little attention within research and debates on the social implications of nanotechnology. This article shows that, in spite of its incipient development, nanotechnology is unquestionably moving toward manufacturing, involving a still very small but increasing component of the labor force. Based on secondary data and the literature review, I compose a picture of the emerging jobs in nanotechnology and highlight four emerging trends in nanotechnology workers’ skills requirements. I show that, in addition to job creation, nanotechnology diffusion is likely to pose labor market changes that may be disruptive for some categories of workers.  相似文献   

20.
International strategy for Nanotechnology Research   总被引:3,自引:3,他引:0  
The worldwide nanotechnology research and development (R&D) investment reported by government organizations has increased by a factor of 3.5 between 1997 and 2001, and the highest rate of 90% is in 2001. At least 30 countries have initiated or are beginning national activities in this field. Scientists have opened a broad net of discoveries that does not leave any major research area untouched in physical, biological, and engineering sciences. Industry has gained confidence that nanotechnology will bring competitive advantages. The worldwide annual industrial production is estimated to exceed $1 trillion in 10–15 years from now, which would require about 2 million nanotechnology workers. U.S. has initiated a multidisciplinary strategy for development of science and engineering fundamentals through the National Nanotechnology Initiative. Japan and Europe have broad programs, and their current plans look ahead to four to five years. Other countries have encouraged their own areas of strength, several of them focusing on fields of the potential markets. Differences among countries are observed in the research domain they are aiming for, the level of program integration into various industrial sectors, and in the time scale of their R & D targets. Nanotechnology is growing in an environment where international interactions accelerate in science, education and industrial R & D. A global strategy of mutual interest is envisioned by connecting individual programs of contributing countries, professional communities, and international organizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号