首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33, which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.  相似文献   

2.
Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a two-dimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0–6), the pitch amplitude (0°–90°), the phase difference between pitch and heave (0°–360°), and the dimensionless wavelength of the foil (3–18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s−1) and maximizing the flapping frequency range (4–25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the effectiveness of our setup by visualizing the vortex dynamics of the flapping foil as a function of pitch amplitude by assessing the symmetry of the vortical wake.  相似文献   

3.
When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = −75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S–H vortex-rings, S1–H1 and S2–H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two anti-symmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25–0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.  相似文献   

4.
This paper is motivated by the works of Dickinson et al. (Science 284:1954–1960, 1999) and Sun and Tang (J Exp Biol 205:55–70, 2002) which provided two different perspectives on the influence of wing–wake interaction (or wake capture) on lift generation during flapping motion. Dickinson et al. (Science 284:1954–1960, 1999) hypothesize that wake capture is responsible for the additional lift generated at the early phase of each stroke, while Sun and Tang (J Exp Biol 205:55–70, 2002) believe otherwise. Here, we take a more fundamental approach to study the effect of wing–wake interaction on the aerodynamic force generation by carrying out simultaneous force and flow field measurements on a two-dimensional wing subjected to two different types of motion. In one of the motions, the wing at a fixed angle of attack was made to follow a motion profile described by “acceleration-constant velocity-deceleration”. Here, the wing was first linearly accelerated from rest to a predetermined maximum velocity and remains at that speed for set duration before linearly decelerating to a stop. The acceleration and deceleration phase each accounted for only 10% of the stroke, and the stroke covered a total distance of three chord lengths. In another motion, the wing was subjected to the same above-mentioned movement, but in a back and forth manner over twenty strokes. Results show that there are two possible outcomes of wing–wake interaction. The first outcome occurs when the wing encounters a pair of counter-rotating wake vortices on the reverse stroke, and the induced velocity of these vortices impinges directly on the windward side of the wing, resulting in a higher oncoming flow to the wing, which translates into a higher lift. Another outcome is when the wing encounters one vortex on the reverse stroke, and the close proximity of this vortex to the windward surface of the wing, coupled with the vortex suction effect (caused by low pressure region at the center of the vortex), causes the net force on the wing to decrease momentarily. These results suggest that wing–wake interaction does not always lead to lift enhancement, and it can also cause lift reduction. As to which outcome prevails depend very much on the flapping motion and the timing of the reverse stroke.  相似文献   

5.
Vineeth  V. K.  Patel  D. K. 《Fluid Dynamics》2022,56(1):S101-S125

The wake characteristics of a custom-designed airfoil performing pitching oscillations, heaving oscillations, and a combination of pitch and heave oscillations are compared in this study. The influence of flapping parameters are investigated at a constant Reynolds number Re\(_{c} = 2640\) and is presented for the Strouhal numbers based on the oscillation amplitude, StA, varying in the \(0.1 \leqslant {\text{S}}{{{\text{t}}}_{A}} \leqslant 0.4\) range. The generation of vorticity above and below the airfoil depends on the airfoil’s initial direction of motion and remains the same for all types of flapping oscillations investigated. The evolution of the leading-edge and trailing-edge vortices is presented. The heaving oscillations of the airfoil are found to have a greater influence on the characteristics of the leading edge vortex. The wake behind the combined pitch-heave oscillations appears to be governed by pitching oscillations below \({\text{S}}{{{\text{t}}}_{A}} = 0.24\), whereas it is driven by heaving oscillations above \({\text{S}}{{{\text{t}}}_{A}} = 0.24\). The force computations indicate that the mere existence of the reverse von Kármán street is not sufficient to develop the thrust on the airfoil. The periodic component of velocity fluctuations significantly influences the wake characteristics. The anisotropic stress field developed around the airfoil due to the periodic fluctuations of the velocity is presented. The coherent structures developed in the wake are identified using the proper orthogonal decomposition and a qualitative comparison of the structures for different flapping oscillations is presented. The energy transfer from the flapping airfoil to the fluid for different flapping oscillations is highest for heaving oscillations followed by combined pitch-heave oscillations and pitching oscillations.

  相似文献   

6.
剪切流作用下层合梁非线性振动特性研究   总被引:1,自引:1,他引:0  
刘昊  瞿叶高  孟光 《力学学报》2022,54(6):1669-1679
针对剪切流中层合梁的大变形非线性振动问题, 采用高阶剪切变形锯齿理论和冯·卡门应变描述层合梁的变形模式和几何非线性效应, 构建了大变形层合梁非线性振动有限元数值模型; 采用基于任意拉格朗日?欧拉方法的有限体积法求解不可压缩黏性流体纳维-斯托克斯方程, 结合层合梁和流体的耦合界面条件建立了剪切流作用下层合梁流固耦合非线性动力学数值模型, 采用分区并行强耦合方法对层合梁的流致非线性振动响应进行了迭代计算. 研究了不同速度分布的剪切流作用下单层梁和多层复合材料梁的振动响应特性, 并验证了本文数值建模方法的有效性. 结果表明: 剪切流作用下单层梁的振动特性与均匀流作用下的情况不同, 梁的运动轨迹受剪切流影响向下偏斜, 随着速度分布系数增加, 尾部流场中的涡结构发生改变; 刚度比对剪切流作用下层合梁的振动特性有显著影响, 随着刚度比的增加, 层合梁振动的振幅增大, 主导频率下降, 运动轨迹由‘8’字形逐渐变得不对称; 发现了不同厚度比和铺层角度情况下, 层合梁存在定点稳定模式、周期极限环振动模式和非周期振动模式三种不同的振动模式, 改变层合梁铺层角度可实现层合梁周期极限环振动模式向非周期振动模式转变.   相似文献   

7.
Flow development in the wake of a dual step cylinder has been investigated experimentally using Laser Doppler Velocimetry and flow visualization. The dual step cylinder model is comprised of a large diameter cylinder (D) mounted at the mid-span of a small diameter cylinder (d). The experiments have been performed for a Reynolds number (Re D ) of 1,050, a diameter ratio (D/d) of 2, and a range of large cylinder aspect ratios (L/D). The results show that the flow development is highly dependent on L/D. The following four distinct flow regimes can be identified based on vortex dynamics in the wake of the large cylinder: (1) for L/D ≥ 15, three vortex shedding cells form in the wake of the large cylinder, one central cell bounded by two cells of lower frequency, (2) for 8 < L/D ≤ 14, a single vortex shedding cell forms in the wake of the large cylinder, (3) for 2 < L/D ≤ 6, vortex shedding from the large cylinder is highly three-dimensional. When spanwise vortices are shed, they deform substantially and attain a hairpin shape in the near wake, (4) for 0.2 ≤ L/D ≤ 1, the large cylinder induces vortex dislocations between small cylinder vortices. The results show that for Regimes I to III, on the average, the frequency of vortex shedding in the large cylinder wake decreases with L/D, which is accompanied by a decrease in coherence of the shed vortices. In Regime IV, small cylinder vortices connect across the large cylinder wake, but these connections are interrupted by vortex dislocations. With decreasing L/D, the frequency of dislocations decreases and the dominant frequency in the large cylinder wake increases toward the small cylinder shedding frequency.  相似文献   

8.
Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient almost the same as a rigid wing when executing hawkmoth motion, but lower than the rigid wing when performing a simple harmonic motion. In all cases studied (7,800 ≤ Re ≤ 11,700), the Reynolds number does not alter the force generation significantly.  相似文献   

9.
In this paper, we investigate the thermal characteristics of wake shear layers generated by a slightly heated circular cylinder. Measurements of the fluctuating temperature were made in the region x/d = 0.6 to x/d = 3 (where x is the downstream distance from the cylinder axis and d is the cylinder diameter) using a single cold-wire probe. The Reynolds number Re was varied in the range 2,600–8,600. For Re = 5,500, simultaneous measurements were made with a rake of 16 cold wires, aligned in the direction of the mean shear, at x/d = 2 and 3. The results indicate that the passive temperature can be an effective marker of various instabilities of the wake shear layers, including the Kelvin–Helmholtz (KH) instability. The temperature data have confirmed the approximate Re m dependence of the KH instability frequency (f KH) with different values of m over different ranges of Re, as reported previously in the literature. However, it is found that this power-law dependence is not exact, and a third-order polynomial dependence appears to fit the data well over the full range of Re. Importantly, it is found that the wake shear-layer instabilities can be grouped into three categories: (1) one with frequencies much smaller than the Bénard–Kármán-vortex shedding frequency, (2) one associated with the vortex shedding and (3) one related to the KH instability. The low-frequency shear-layer instabilities from both sides of the cylinder are in-phase, in contrast to the anti-phase high-frequency KH instabilities. Finally, the observed streamwise decrease in the mean KH frequency provides strong support for the occurrence of vortex pairing in wake shear layers from a circular cylinder, thus implying that both the wake shear layer and a mixing layer develop in similar fashion.  相似文献   

10.
Aerodynamic forces and flow fields of a two-dimensional hovering wing   总被引:1,自引:1,他引:0  
This paper reports the results of an experimental investigation on a two-dimensional (2-D) wing undergoing symmetric simple harmonic flapping motion. The purpose of this investigation is to study how flapping frequency (or Reynolds number) and angular amplitude affect aerodynamic force generation and the associated flow field during flapping for Reynolds number (Re) ranging from 663 to 2652, and angular amplitudes (α A) of 30°, 45° and 60°. Our results support the findings of earlier studies that fluid inertia and leading edge vortices play dominant roles in the generation of aerodynamic forces. More importantly, time-resolved force coefficients during flapping are found to be more sensitive to changes in α A than in Re. In fact, a subtle change in α A may lead to considerable changes in the lift and drag coefficients, and there appears to be an optimal mean lift coefficient around α A = 45°, at least for the range of flow parameters considered here. This optimal condition coincides with the development a reverse Karman Vortex street in the wake, which has a higher jet stream than a vortex dipole at α A = 30° and a neutral wake structure at α A = 60°. Although Re has less effect on temporal force coefficients and the associated wake structures, increasing Re tends to equalize mean lift coefficients (and also mean drag coefficients) during downstroke and upstroke, thus suggesting an increasing symmetry in the mean force generation between these strokes. Although the current study deals with a 2-D hovering motion only, the unique force characteristics observed here, particularly their strong dependence on α A, may also occur in a three-dimensional hovering motion, and flying insects may well have taken advantage of these characteristics to help them to stay aloft and maneuver. An erratum to this article can be found at  相似文献   

11.
The effectiveness of a small array of body-mounted sensors, for estimation and eventually feedback flow control of a D-shaped cylinder wake is investigated experimentally. The research is aimed at suppressing unsteady loads resulting from the von-Kármán vortex shedding in the wake of bluff-bodies at a Reynolds number range of 100–1,000. A low-dimensional proper orthogonal decomposition (POD) procedure was applied to the stream-wise and cross-stream velocities in the near wake flow field, with steady-state vortex shedding, obtained using particle image velocimetry (PIV). Data were collected in the unforced condition, which served as a baseline, as well as during influence of forcing within the “lock-in” region. The design of sensor number and placement was based on data from a laminar direct numerical simulation of the Navier-Stokes equations. A linear stochastic estimator (LSE) was employed to map the surface-mounted hot-film sensor signals to the temporal coefficients of the reduced order model of the wake flow field in order to provide accurate yet compact estimates of the low-dimensional states. For a three-sensor configuration, results show that the estimation error of the first two cross-stream modes is within 20–40% of the PIV-generated POD time coefficients. Based on previous investigations, this level of error is acceptable for a moderately robust controller required for feedback flow control.  相似文献   

12.
3-D evolution of Kármán vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circular cylinder is investigated numerically based on inviscid vortex dynamics by analyzing the response of the initially 2-D spanwise vortex filaments to periodic spanwise disturbance of varying magnitude, wavelength and initial phase angles. Our results reveal a kind of 3-D vortex system in the wake which consists of large scale horseshoe-shaped vortices and small scale γ-shaped vortex filaments as well as vortex loops. The mechanism and the dynamic process about the generation of streamwise vortical structure and the 3-D coherent structure are reported. currently published in the Chinese Edition of Acta Mechanica Sinica, Vol.25, No.3, 1993 The project supported by National Natural Science Foundation of China and the National Basic Research Project “Nonlinear Science”  相似文献   

13.
Von Kármán was the first to present a quantitative model of the “vortex street” wake as a double row of point vortices, to determine which configurations propagate in the direction of the rows, and to consider the linear stability theory for such states. In the early literature one works with infinite rows of vortices. The vortex street is assumed to continue to infinity both upstream and downstream. Another analytical approach is to use periodic boundary conditions in the direction of the wake. This representation was used by Domm in his analysis of the instability of the Kármán vortex street. Birkhoff and Fisher in 1959 were the first to treat vortices in a periodic strip as a dynamical system in its own right. We have used the periodic system to address problems of vortex wake patterns, in particular vortex wakes that are more complicated than the traditional two-vortices-per-strip configurations. We use the term “exotic” for such wakes. We submit that this approach can yield a number of insights, including results of direct relevance to experiments, in the same sense that von Kármán's analysis has been helpful to the understanding of the regular vortex street wake, and we present the results obtained to date following this program.  相似文献   

14.
The relationship between the maneuvering kinematics of a Giant Danio (Danio aequipinnatus) and the resulting vortical wake is investigated for a rapid, ‘C’-start maneuver using fully time-resolved (500 Hz) particle image velocimetry (PIV). PIV illuminates the two distinct vortices formed during the turn. The fish body rotation is facilitated by the initial, or “maneuvering” vortex formation, and the final fish velocity is augmented by the strength of the second, “propulsive” vortex. Results confirm that the axisymmetric vortex ring model is reasonable to use in calculating the hydrodynamic impulse acting on the fish. The total linear momentum change of the fish from its initial swimming trajectory to its final swimming trajectory is balanced by the vector sum of the impulses of both vortex rings. The timing of vortex formation is uniquely synchronized with the fish motion, and the choreography of the maneuver is addressed in the context of the resulting hydrodynamic forces.  相似文献   

15.
The flapping dynamics of a piezoelectric membrane placed behind a circular cylinder, which are closely related to its energy harvesting performance, were extensively studied near the critical regime by varying the distance between the cylinder and the membrane. A total of four configurations were used for the comparative study: the baseline configuration in the absence of the upstream circular cylinder, and three configurations with different distances (S) between the cylinder and the membrane (S/D=0, 1, and 2). A polyvinylidene fluoride (PVDF) membrane was configured to flutter at its second mode in these experiments. The Reynolds number based on the membrane’s length was 6.35×104 to 1.28×105, resulting in a full view of membrane dynamics in the subcritical, critical, and postcritical regimes. The membrane shape and the terminal voltage were simultaneously measured with a high-speed camera and an oscilloscope, respectively. The influence of the upstream cylinder on the membrane dynamics was discussed in terms of time-mean electricity, instantaneous variations and power spectra of terminal voltage and membrane shape, fluctuating voltage amplitude, and flapping frequency. The experimental results overwhelmingly demonstrated that the terminal voltage faithfully reflected various unsteady events embedded in the membrane’s flapping motion. For all configurations, dependency of the captured electricity on a flow speed beyond the critical status was found to follow the parabolic relationship. In the two configurations in which S/D=0 and 1, the extraneously induced excitation by the Kármán vortex street behind the circular cylinder substantially reduced the critical flow speed, giving rise to effective energy capture at a lower flow speed and a relatively high gain in power output. However, in the configuration in which S/D=2, the intensified excitation by the Kármán vortex street on the membrane considerably reduced the captured energy. Finally, a transient analysis of the membrane’s flapping dynamics in the configuration in which S/D=0 was performed in terms of phase-dependent variations of the membrane segment’s moving speed, membrane curvature, and terminal voltage; the analysis resulted in a full understanding of the energy harvesting process with consecutive inter transfer of elastic, kinetic, and electric energies.  相似文献   

16.
Particle image velocimetry measurements are performed in the near wake of a circular cylinder at a Reynolds number of 12,500. Attention is focused on the shear layer that develops just downstream of the separation point from the cylinder surface to investigate the possible existence of a preferred spatio-temporal organization in this flow region and the possible occurrence of the vortex pairing phenomenon. Eddy structures are identified in instantaneous velocity maps in order to investigate their spatial relationships. For that purpose a vortex extraction procedure is designed, based on the wavelet transform of instantaneous maps of the swirling strength. This algorithm allows not only the detection of the vortical structures from the instantaneous velocity fields, giving access to their instantaneous location, but also the estimation of their main characteristics such as their radius, intensity and convection velocity. The vortex population detected in the shear layer is found to be of small diameter compared to that of the von Kármán vortex and of rather high intensity, in agreement with the existence of a thin shear layer. The strong flapping motion of the shear layer and its complex spatial development is also confirmed. By employing conditional analysis of the computed data and their proper scaling, the surrounding of the detected vortex cores is investigated. A preferred spatial vortex separation is detected and is shown to vary with the longitudinal distance from the origin of the shear layer, in agreement with the qualitative behavior of a turbulent plane mixing layer. Evidence of the occurrence of the vortex pairing or amalgamation mechanisms in the shear layer is also demonstrated.  相似文献   

17.
Singular value decomposition (SVD) is often used as a tool to analyze particle image velocimetry (PIV) data. However, experimental error tends to corrupt higher SVD modes, in which the root mean square velocity value is smaller than the experimental error. Therefore, we suggest that the threshold criterion, $s_k >\sqrt{DT}\epsilon,$s_k >\sqrt{DT}\epsilon, can be used as a rough limit of the validity of SVD modes extracted from experimental data (where s k is the singular value of mode k, D and T are the number of data sites and time steps, respectively, and e\epsilon is the root mean square PIV error). By synthesizing the relationship between the general SVD procedure and its two special cases—biorthogonal decomposition (BOD) and proper orthogonal decomposition (POD)—we show that our criterion can be used to assess modes extracted by either BOD or POD. We apply our threshold criterion to PIV data of the wake behind a live swimming Giant Danio (Danio aequipinnatus). The biorthogonal decomposition of the fish wake, which is a reverse-Kármán street, reveals that the first four modes are similar to the modes of a regular Kármán street created in the wake of a stationary cylinder and that higher modes are corrupted by experimental error.  相似文献   

18.
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Kairmain vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.  相似文献   

19.
Differences in the structure and dynamics of nominally two-dimensional turbulent wakes are investigated experimentally for a thin flat plate, normal to a uniform flow, with two different end conditions: with and without end plates. Both cases are characterized by Karman-like vortex shedding with broadband low frequency unsteadiness. Both wakes evidence a low frequency flapping motion in addition to the slowly drifting base flow common to cylinder wakes. For the case without end plates, an interaction between the drift motion and the vortex formation process is associated with a much stronger modulation of the quasiperiodic vortex shedding amplitude when compared to the case with end plates where a flapping motion is more strongly expressed. These dynamics underlie structural differences in the mean wake and Reynolds stress fields.  相似文献   

20.
The present work uses dynamic mode decomposition (DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap. The physics of DMD is first introduced. Then the PIV-measured wake flow velocity field is decomposed into dynamical modes. The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency, wavelength and convection speed. It is observed that high-order dynamic modes convect faster than low-order modes; moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号