首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present the theory of space–time elasticity and demonstrate that it is the extended reversible thermodynamics and gives the coupled model of thermoelasticity and heat conductivity and involves traditional thermoelasticity. We formulate the generally covariant variational model’s dynamic thermoelasticity and heat conductivity in which the basic kinematic and static variables are unified tensor objects (subject, matter). Variation statement defines the whole set of the initial-boundary problems for the 4D vector governing equation (Euler equation), the spatial projections of which define motion equations and the time projection gives the heat conductivity equation. We show that space–time elasticity directly implies the Fourier and the Maxwell–Cattaneo laws of heat conduction. However, space–time elasticity is richer than classical thermoelasticity, and it advocates its own equations of motion for coupled thermoelasticity. Moreover, we establish that the Maxwell–Cattaneo law and Fourier law can be defined for the reversible processes as compatibility equations without introducing dissipation. We argue that the present framework of space–time elasticity should prove adequate to describe the thermoelastic phenomena at low temperatures for interpreting the results of molecular simulations of heat conduction in solids and for the optimal heat and stress management in the microelectronic components and the thermoelectric devices.  相似文献   

2.
In view of the finite relaxation model of non-Fourier’s law, the Cattaneo and Vernotte (CV) model and Fourier’s law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier’s law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.  相似文献   

3.
We study the effects of the Maxwell–Cattaneo (MC) law of heat conduction on the flow of a Newtonian fluid in a vertical slot subject to both vertical and horizontal temperature gradients. Working in one spatial dimension (1D), we employ a spectral expansion involving Rayleigh’s beam functions as the basis set, which are especially well-suited to the fourth order boundary value problem (b.v.p.) considered here, and the stability of the resulting dynamical system for the Galerkin coefficients is investigated. It is shown that the absolute value of the (negative) real parts of the eigenvalues are reduced, while the absolute values of the imaginary parts are somewhat increased, under the MC law. This means that the presence of the time derivative of the heat flux increases the order of the system, thus leading to more oscillatory regimes in comparison with the usual Fourier case. Moreover, no eigenvalues with positive real parts were found, which means that in this particular situation, the inclusion of thermal relaxation does not lead to destabilization of the motion.  相似文献   

4.
A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte model, and the Fourier model are obtained with finite Fourier and Laplace transforms. The effects of the fractional order parameter and the relaxation time on the temperature fields in the finite slab are investigated. The results show that the larger the fractional order parameter, the slower the thermal wave. Moreover, the higher the relaxation time, the slower the heat flux propagates. By comparing the fractional order Cattaneo model with the classical Cattaneo-Vernotte and Fourier models, it can be found that the heat flux predicted using the fractional Cattaneo model always transports from the high temperature to the low one, which is in accord with the second law of thermodynamics. However, the classical Cattaneo-Vernotte model shows that the unphysical heat flux sometimes transports from the low temperature to the high one.  相似文献   

5.
 The Cattaneo hyperbolic and classical parabolic models of heat conduction in the laser irradiated materials are compared. Laser heating is modelled as an internal heat source, whose capacity is given by g(x,t)= I(t)(1−Rexp(−μx). Analytical solution for the one-dimensional, semi-infinite body with the insulated boundary is obtained using Laplace transforms and the discussion of solutions for different time characteristics of the heat source capacity (constant, instantaneous, exponential, pulsed and periodic) is presented. Received on 18 May 1999  相似文献   

6.
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 < α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.  相似文献   

7.
The Maxwell–Cattaneo heat conduction theory, the Lord–Shulman theory of thermoelasticity and a hyperbolic theory of thermoviscoelasticity are studied. The dispersion relations are analyzed in the case when a solution is represented in the form of an exponential function decreasing in time. Simple formulas that quite accurately approximate the dispersion curves are obtained. Based on the results of analysis of the dispersion relations, an experimental method of determination of the heat flux relaxation time is suggested.  相似文献   

8.
短脉冲激光加热引起材料内部复杂的传热过程及热变形,现有的以Fourier定律或Cattaneo-Vernotte松弛方程结合弹性理论为框架建立起来热应力理论在刻画其热物理过程存在严重缺陷. 本文基于分数阶微积分理论, 以半空间为研究对象, 建立了分数阶Cattaneo热传导方程和相应的热应力方程, 给出了问题的初始条件和边界条件, 采用拉普拉斯变换方法, 给出了非高斯时间分布激光热源辐射下温度场和热应力场的解析解, 研究了短脉冲激光加热的温度场及热应力场的热物理行为. 数值计算中, 首先对理论解进行数值验证, 然后取分数阶变量$p=0.5$研究温度场和热应力场的变化特点及激光参数对温度和热应力的影响,最后数值计算分数阶参数对温度和热应力场的影响. 计算结果表明, 分数阶Cattaneo传热方程和热应力方程描述的温度和热应力任然具有波动特性,与经典的Fourier传热模型和标准的Cattaneo传热模型相比, 分数阶阶次越大, 热波波速越小, 热波波动性越明显; 反之, 则热波波速越大, 热扩散性越强.激光加热和冷却的速度越快, 温度上升和下降的速度越快, 压应力和拉应力交替变化越快, 温度变化幅值越小, 热应力幅值影响不明显.   相似文献   

9.
Coupled equations of thermoelasticity take into account the effect of nonuniform heating on the medium deformation and that of the dilatation rate on the temperature distribution. As a rule, the coupling coefficients are small and it is assumed, sometimes without proper justification, that the effect of the dilatation rate on the heat conduction process can be neglected. The aim of the present paper is to construct analytical solutions of some model boundary-value problems for a thermoelastic bounded body and to determine the body characteristic dimensions and the medium thermomechanical moduli forwhich it is necessary to take into account that the temperature and displacement fields are coupled. We consider some models constructed on the basis of the Fourier heat conduction law and the generalized Cattaneo-Jeffreys law in which the heat flux inertia is taken into account. The solution is constructed as an expansion in a biorthogonal system of eigenfunctions of the nonself-adjoint operator pencil generated by the coupled equations of motion and heat conduction. For the model problem, we choose a special class of boundary conditions that allows us to exactly determine the pencil eigenvalues.  相似文献   

10.
The classical heat conduction equation is generalized using a generalized heat conduction law. In particular, we use the space-time Cattaneo heat conduction law that contains the Caputo symmetrized fractional derivative instead of gradient ${{\partial_x}}$ and fractional time derivative instead of the first order partial time derivative ${{\partial_t}}$ . The existence of the unique solution to the initial-boundary value problem corresponding to the generalized model is established in the space of distributions. We also obtain explicit form of the solution and compare it numerically with some limiting cases.  相似文献   

11.

The purpose of this investigation is to theoretically shed some light on the effect of the unsteady electroosmotic flow (EOF) of an incompressible fractional second-grade fluid with low-dense mixtures of two spherical nanoparticles, copper, and titanium. The flow of the hybrid nanofluid takes place through a vertical micro-channel. A fractional Cattaneo model with heat conduction is considered. For the DC-operated micropump, the Lorentz force is responsible for the pressure difference through the microchannel. The Debye-Hükel approximation is utilized to linearize the charge density. The semi-analytical solutions for the velocity and heat equations are obtained with the Laplace and finite Fourier sine transforms and their numerical inverses. In addition to the analytical procedures, a numerical algorithm based on the finite difference method is introduced for the given domain. A comparison between the two solutions is presented. The variations of the velocity heat transfer against the enhancements in the pertinent parameters are thoroughly investigated graphically. It is noticed that the fractional-order parameter provides a crucial memory effect on the fluid and temperature fields. The present work has theoretical implications for biofluid-based microfluidic transport systems.

  相似文献   

12.
The paper presents a solution to the problem of thermal conduction and thermoelasticity for a thin shallow spherical shell heated by a concentrated or local impulsive heat source moving over the shell surface. It is assumed that temperature is linearly distributed across the shell thickness and that the shell, on its sides, exchanges heat with the environment in accordance with Newton’s law of cooling. The Fourier and Laplace transforms are used to find an analytic solution. The dependence of the temperature field and stress/strain components on the type of heating and the form of heat source is studied __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 11, pp. 85–92, November 2006.  相似文献   

13.
Heat conduction solutions are presented for the case where the material obeys a non-Fourier conduction law. In contrast to the Fourier law which predicts an infinite speed of heat propagation, the non-Fourier theory implies that the speed of thermal signals are finite. Axisymmetric problems for regions interior and exterior to a circular cylinder are investigated by using methods of Laplace transformation and asymptotic analysis. Comparisons of the temperature profiles are made with Fourier theory for the case of step function temperature boundary conditions.  相似文献   

14.
We consider the full Navier–Stokes–Fourier system describing the motion of a compressible viscous and heat conducting fluid driven by a time-periodic external force. We show the existence of at least one weak time periodic solution to the problem under the basic hypothesis that the system is allowed to dissipate the thermal energy through the boundary. Such a condition is in fact necessary, as energetically closed fluid systems do not possess non-trivial (changing in time) periodic solutions as a direct consequence of the Second law of thermodynamics.  相似文献   

15.
This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fractional calculus approach is used to establish the constitutive relationship coupling model of a viscoelastic fluid. We use the Laplace transform and solve ordinary differential equations with a matrix form to obtain the velocity and temperature in the Laplace domain. To obtain solutions from the Laplace space back to the original space, the numerical inversion of the Laplace transform is used. According to the results and graphs, a new theory can be constructed. Comparisons of the associated parameters and the corresponding flow and heat transfer characteristics are presented and analyzed in detail.  相似文献   

16.
This article describes new a priori stability for the full nonlinear systems of coupled thermoplasticity at finite strains and presents a fractional step method leading to a new class of unconditionally stable staggered algorithms. These results are shown to hold for general models of multiplicative plasticity that include, as a particular case, the single-crystal model. The proposed product formula algorithm is designed via an entropy based operator split that yields one of the first known staggered algorithms that retains the property of nonlinear unconditional stability. The scheme employs an isentropic step, in which the total entropy is held constant, followed by a heat conduction step (with nonlinear source) at fixed configuration. The nonlinear stability analysis shows that the proposed staggered scheme inherits the a priori energy estimate for the continuum problem, regardless of the size of the time-step. In sharp contrast with these results, it is shown that widely used staggered methods employing an isothermal step followed by a heat conduction problem can be at most only conditionally stable. The excellent performance of the methodology is illustrated in representative numerical simulations.  相似文献   

17.
In the context of heat conduction governed by the celebrated Cattaneo equation, Christov has recently proposed a modification of the time derivative term in order to satisfy the objectivity principle. For such a model applied to an incompressible fluid, the uniqueness of the solution is here proved.  相似文献   

18.
A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer–Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.  相似文献   

19.
In this work, the field equations of the linear theory of thermoelasticity have been constructed in the context of a new consideration of Fourier law of heat conduction with time-fractional order and three-phase lag. A uniqueness and reciprocity theorems are proved. One-dimensional application for a half-space of elastic material in the presence of heat sources has been solved using Laplace transform and state space techniques Ezzat (Canad J Phys Rev 86:1241–1250, 2008). According to the numerical results and its graphs, conclusion about the new theory has been established.  相似文献   

20.
An analysis has been performed to study the influence of velocity dependent dispersion on transverse heat transfer in mixed convection flow above a horizontal wall of prescribed temperature in a saturated porous medium. The Boussinesq approximation and boundary layer analysis were used to numerically obtain gravity affected temperature and velocity distributions within the frames of Darcy's law and a total thermal diffusivity tensor comprising both of constant coefficient heat conduction and velocity proportional mechanical heat dispersion. Dependending on Pe, the molecular Peclét number basing on the effective thermal diffusivity and the velocity of the oncoming flow, density coupling has distinct influences on heat transfer rates between the wall surface and the porous medium flow region. For small Peclét numbers, when heat conduction is the prevailing mechanism, wall heat fluxes are the higher the larger the density difference between the oncoming and the near wall fluid is. The opposite is true for larger Peclét numbers, when mechanical heat dispersion is the main cause of heat spreading. For Pe tending to infinity these wall heat fluxes approach finite maximum values in the total heat diffusivity model, they grow beyond any limit if only constant coefficient heat conduction is considered. Thus, the inclusion of mechanical heat dispersion effects yields physically more realistic predictions. Received on 18 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号