首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A predator–prey model was extended to include nonlinear harvesting of the predator guided by its population, such that harvesting is only implemented if the predator population exceeds an economic threshold. The proposed model is a nonsmooth dynamic system with switches between the original predator-prey model (free subsystem) and a model with nonlinear harvesting (harvesting subsystem). We initially examine the dynamics of both the free and the harvesting subsystems, and then we investigate the dynamics of the switching system using theories of nonsmooth systems. Theoretical results showed that the harvesting subsystem undergoes multiple bifurcations, including saddle-node, supercritical Hopf, Bogdanov–Takens and homoclinic bifurcations. The switching system not only retains all of the complex dynamics of the harvesting system but also exhibits much richer dynamics such as a sliding equilibrium, sliding cycle, boundary node (saddle point) bifurcation, boundary saddle-node bifurcation and buckling bifurcation. Both theoretical and numerical results showed that, by implementing predator population guided harvesting, the predator and prey population could coexist in more scenarios than those in which the predator may go extinct for the continuous harvesting regime. They could either stabilize at an equilibrium or oscillate periodically depending on the value of the economic threshold and the initial value of the system.  相似文献   

2.
3.
4.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

5.
In this paper, complex dynamics of a diffusive predator–prey model is investigated, where the prey is subject to strong Allee effect and threshold harvesting. The existence and stability of nonnegative constant steady state solutions are discussed. The existence and nonexistence of nonconstant positive steady state solutions are analyzed to identify the ranges of parameters of pattern formation. Spatially homogeneous and nonhomogeneous Hopf bifurcation and discontinuous Hopf bifurcation are proved. These results show that the introduction of strong Allee effect and threshold harvesting increases the system spatiotemporal complexity. Finally, numerical simulations are presented to validate the theoretical results.  相似文献   

6.
Cannibalism, as a behavioral trait, is prevalent in many species. To have better understanding of their dynamics, we investigate a structured predator-prey system with predator cannibalism, where the prey population follows the logistic growth in the absence of the predator. We study the effects of the cannibalism attack rate and the corresponding benefit rate of cannibals on the model dynamics. Complex phenomena, including the bistability, the existences of two positive equilibria and stable/unstable periodic solutions, are found. We define quantities with clear biological meanings, and establish conditions determining the local and global dynamics of the model based on these quantities. Our results show that, under certain conditions, the final states of the populations depend on not only the related model parameters but also the initial conditions of the solutions.  相似文献   

7.
We consider a predator–prey model, where some prey are completely free from predation within a temporal or spacial refuge. The most common type of spacial refuge, that we investigate here, takes the form where a constant proportion of the prey population is protected. The model is a modification of the classical Nicholson–Bailey host-parasitoid model. In this paper, we study the effect of the presence of refuge on the stability and bifurcation of the system. Moreover, we provide a detailed analysis of the Neimark–Sacker bifurcation of the model.  相似文献   

8.
This paper is concerned with a delayed predator–prey system with diffusion effect. First, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated by analyzing the distribution of the eigenvalues. Next the direction and the stability of Hopf bifurcation are determined by the normal form theory and the center manifold reduction for partial functional differential equations. Finally, some numerical simulations are carried out for illustrating the theoretical results.  相似文献   

9.
In this paper, we consider a ratio-dependent predator–prey system with diffusion. And we mainly discuss the following problems: (1) stability and Hopf bifurcation analysis of the positive equilibrium for the reduced ODE system; (2) Diffusion-driven instability of the equilibrium solution; (3) Hopf bifurcations for the corresponding diffusion system with homogeneous Neumann boundary conditions. In order to verify our theoretical results, some numerical simulations are also included, respectively.  相似文献   

10.
Recently, Venturino and Petrovskii proposed a general predator–prey model with group defense for prey species (Venturino and Petrovskii, 2013). The local dynamics had been studied and showed that the model might undergo Hopf bifurcation, and have an extinction domain. In this paper, we dedicate ourselves to the investigation of the global dynamics of the model by establishing the conditions of the nonexistence of periodic orbits, and the existence and uniqueness of limit cycles.  相似文献   

11.
In this paper, complex dynamics of the discrete predator–prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark–Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark–Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.  相似文献   

12.
Establishing and researching a population dynamical model based on the differential equation is of great significance. In this paper, a predator–prey system with inducible defense and disease in the prey is built from biological evolution and Eco-epidemiology. The effect of disease on population stability in the predator–prey system with inducible defense is studied. Firstly, we verify the positivity and uniform boundedness of the solutions of the system. Then the existence and stability of the equilibria are studied. There are no more than nine equilibrium points in the system. We use a sophisticated parameter transformation to study the properties of the coexistence equilibrium points of the system. A sufficient condition is established for the existence of Hopf bifurcation. Numerical simulations are performed to make analytical studies more complete.  相似文献   

13.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

14.
A stage-structured predator–prey system with Holling type-II functional response and time delay due to the gestation of predator is investigated. By analyzing the characteristic equations, the local stability of each of feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory on infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator-extinction equilibrium and the coexistence equilibrium are not feasible, and that the predator-extinction equilibrium is globally asymptotically stable if the coexistence equilibrium does not exist, and sufficient conditions are derived for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.  相似文献   

15.
16.
The dynamics of a discrete-time predator–prey system is investigated in the closed first quadrant R+2. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of R+2 by using a center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as orbits of period 7, 14, 21, 63, 70, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, quasi-periodic orbits and chaotic sets. These results show far richer dynamics of the discrete model compared with the continuous model. Specifically, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.  相似文献   

17.
In this paper, we analyze the dynamical behaviour of a bioeconomic model system using differential algebraic equations. The system describes a prey–predator fishery with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. It is observed that a singularity-induced bifurcation phenomenon appears when a variation of the economic interest of harvesting is taken into account. We have incorporated a state feedback controller to stabilize the model system in the case of positive economic interest. A discrete-type gestational delay of predators is incorporated, and its effect on the dynamical behaviour of the model is analyzed. The occurrence of Hopf bifurcation of the proposed model with positive economic profit is shown in the neighbourhood of the coexisting equilibrium point through considering the delay as a bifurcation parameter. Finally, some numerical simulations are given to verify the analytical results, and the system is analyzed through graphical illustrations.  相似文献   

18.
The main goal of this paper is to describe the global dynamic of a predator–prey model with nonconstant death rate and diffusion. We obtain necessary and sufficient conditions under which the system is dissipative and permanent. We study the global stability of the nontrivial equilibrium, when it is unique. Finally, we show that there are no nontrivial steady state solutions for certain parameter configuration.  相似文献   

19.
The dynamics of a kind of reaction–diffusion predator–prey system with strong Allee effect in the prey population is considered. We prove the existence and uniqueness of the solution and give a priori bound. Hopf bifurcation and steady state bifurcation are studied. Results show that the Allee effect has significant impact on the dynamics.  相似文献   

20.
A predator–prey model with logistic growth in prey is modified by introducing an SIS parasite infection in the prey. We have studied the combined effect of environmental toxicant and disease on prey–predator system. It is assumed in this paper that the environmental toxicant affects both prey and predator population and the infected prey is assumed to be more vulnerable to the toxicant and predation compared to the sound prey individuals. Thresholds are identified which determine when system persists and disease remains endemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号