首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conjugated monomers, 7,7,8,8-tetrakis(alkoxycarbonyl)quinodimethanes (methoxy (1a), ethoxy (1b), isopropoxy (1c), benzyloxy (1d), chloroethoxy (1e), and bromoethoxy (1f)), were synthesized. Recrystallizations of 1a, 1c, 1e, and 1f yielded two crystal forms (prisms (1a-A) and needles (1a-B), needles (1c-A) and plates (1c-B), prisms (1e-A) and plates (1e-B), and prisms (1f-A) and needles (1f-B)), which have different molecular packing modes by X-ray crystal structure analysis, indicating that the crystals are polymorphic. In the photopolymerizations of these monomer crystals in the solid state, 1a-A, 1e-A, and 1f-A polymerized topochemically to give crystalline polymers. For their thermal polymerizations in the solid state, in addition to 1a-A, 1e-A, and 1f-A, 1e-B and 1f-B polymerized, but polymers formed from the 1e-B and 1f-B were amorphous. The packing of quinodimethane molecules in the crystals was defined by four kinds of parameters, stacking distance (d(s)), the distance between the reacting exomethylene carbon atoms (d(cc)), the angles formed between the stacking axis and longer axis of the monomer molecule (theta(1)), and the shorter axis of the monomer molecule (theta(2)), and then the polymerization reactivity of these quinodimethanes in the solid state was discussed on the basis of these parameters.  相似文献   

2.
Derivatives of the azoalkane 2,3-diazabicyclo[2,2,2]oct-2-ene (1a) with bridgehead 1,4-dialkyl (1b), 1,4-dichloro (1c), 1-hydroxymethyl (1d), 1-aminomethyl (1e), and 1-ammoniummethyl (1f) substituents form host-guest inclusion complexes with beta-cyclodextrin. They were employed as probes to assess substituent effects on the kinetics and thermodynamics of this complexation by using time-resolved and steady-state fluorimetry, UV spectrophotometry, induced circular dichroism (ICD) measurements, and (1)H NMR spectroscopy. The kinetic analysis based on quenching of the long-lived fluorescence of the azoalkanes by addition of host provided excited-state association rate constants between 2.6 x 10(8) and 7.0 x 10(8) M(-)(1) s(-)(1). The binding constants for 1a (1100 M(-1)), 1b (900 M(-1)), 1c (1900 M(-1)), 1d (180 M(-1)), 1e (250 M(-1)), and 1f (ca. 20 M(-1)) were obtained by UV, NMR, and ICD titrations. A positive ICD signal of the azo absorption around 370 nm was observed for the beta-cyclodextrin complexes of 1a, 1d, and 1f with the intensity order 1a > 1d approximately 1f, and a negative signal was measured for those of 1b, 1c, and 1e with the intensity order 1c < 1b approximately 1e. The ICD was employed for the assignment of the solution structures of the complexes, in particular the relative orientation of the guest in the host (co-conformation).  相似文献   

3.
The extensive search for the global minimum structure of Hf3 at the B3LYP/LANL2DZ level of theory revealed that D3h 3A2' (1a1'(2)1a2'(2)1e'(4)2a1'(2)1e'2) and D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) are the lowest triplet and singlet states, respectively, with the triplet state being the lowest one. However, at the CASSCF(10,14)/Stuttgart+2f1g level of theory these two states are degenerate, indicating that at the higher level of theory the singlet state could be in fact the global minimum structure. The triplet D3h 3A2' (1a1'21a2'(2)1e'(4)2a1'(2)1e'2) structure is doubly (sigma- and pi-) aromatic and the singlet D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) structure is the first reported triply (sigma-, pi-, and delta-) aromatic system.  相似文献   

4.
In this paper, the vertical excitation energies of total of 32 states of N(2)O(4) including the lowest two singlet states and two triplet states of each of the A(g), B(3u), B(2u), B(1g), B(1u), B(2g), B(3g), and A(u) symmetries were calculated at multiconfigurational self-consistent field (MCSCF) and the multireference internally contracted configuration interaction (MRCI) levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set. The potential energy curves of the eight singlet states(1 (1)A(g), 1 (1)B(3u), 1 (1)B(2u), 1 (1)B(1g), 1 (1)B(1u), 1 (1)B(2g), 1 (1)B(3g), and 1 (1)A(u)) and eight triplet states (1 (3)A(g), 1 (3)B(3u), 1 (3)B(2u), 1 (3)B(1g), 1 (3)B(1u), 1 (3)B(2g), 1 (3)B(3g), and 1 (3)A(u)) were calculated at MCSCF and MRCI levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set along the N-N distance. The vertical excitation energies of 1 (1)B(3u), 1 (1)B(2u), and 1 (1)B(1u) states with nonzero transition moment are 4.60 eV (269.6 nm), 6.06 eV (204.6 nm), and 7.71 eV (160.8 nm), respectively, at MRCI level of theory. The photodissociation asymptotics were assigned as NO(2)(X (2)A(1))+NO(2)(X (2)A(1)) for ground state 1 (1)A(g) and the 1 (3)B(1u) state, NO(2)(X (2)A(1))+NO(2)(1 (2)A(2)) for the 1 (1)B(1g), 1 (3)B(1g), 1 (1)A(u), and 1 (3)A(u) states, NO(2)(X (2)A(1))+NO(2)(1 (2)B(1)) for the 1 (1)B(3u), 1 (3)B(3u), 1 (1)B(2g), and 1 (3)B(2g) states, and NO(2)(X (2)A(1))+NO(2)(1 (2)B(2)) for the 1 (1)B(2u), 1 (3)B(2u), 1 (1)B(3g), and 1 (3)B(3g) states.  相似文献   

5.
Sub-Doppler high-resolution excitation spectra and the Zeeman effects of the 6(0)(1), 1(0)(1)6(0)(1), and 1(0)(2)6(0)(1) bands of the S1(1)B2u<--S(0)(1)A1g transition of benzene were measured by crossing laser beam perpendicular to a collimated molecular beam. 1593 rotational lines of the 1(0) (1)6(0) (1) band and 928 lines of the 1(0)(2)6(0)(1) band were assigned, and the molecular constants of the excited states were determined. Energy shifts were observed for the S1(1)B2u(v1=1,v6=1,J,Kl=-11) levels, and those were identified as originating from a perpendicular Coriolis interaction. Many energy shifts were observed for the S1(1)B2u(v1=2,v6=1,J,Kl) levels. The Zeeman splitting of a given J level was observed to increase with K and reach the maximum at K=J, which demonstrates that the magnetic moment lies perpendicular to the molecular plane. The Zeeman splittings of the K=J levels were observed to increase linearly with J. From the analysis, the magnetic moment is shown to be originating mostly from mixing of the S1(1)B2u and S2(1)B1u states by the J-L coupling (electronic Coriolis interaction). The number of perturbations was observed to increase as the excess energy increases, and all the perturbing levels were found to be a singlet state from the Zeeman spectra.  相似文献   

6.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

7.
The present article reports the spectroscopic investigations on non-covalent interaction of fullerenes C(60) and C(70) with a macrocyclic receptor molecule, namely, 1,3,5,7-tetrahomo-p-tert-butylcalix[8]arene (1) in toluene. Jobs method of continuous variation reveals 1:1 stoichiometry for the fullerene complexes of 1. The most fascinating feature of the present study is that 1 binds selectively C(60) compared to C(70) as obtained from binding constant (K) data of C(60)-1 (K(C60-1)) and C(70)-1 (K(C70-1)) complexes which are enumerated to be 265,000 dm(3) mol(-1) and 63,43 dm(3) mol(-1), respectively, and selectivity in binding (K(C60-1)/K(C70-1)) is estimated to be 4.18 as obtained from UV-Vis study. Steady state fluorescence studies reveal quenching of fluorescence of 1 in presence of fullerenes and the K value of the C(60)-1 and C(70)-1 complexes are estimated to be 80,760 and 68,780 dm(3) mol(-1), respectively, with selectivity in binding (K(C60-1)/K(C70-1)) ~1.18. (1)H NMR analysis provides very good support in favor of strong binding between C(60) and 1. The high value of K value for C(60)-1 complex indicates that 1 forms an inclusion complex with C(60).  相似文献   

8.
对于较大的簇合物,电子衍射技术或许能得到有用的信息[1].而小簇合物Mn(3≤n《50)的几何结构就没有标准的方法加以测定.对于二聚体和三聚体[2-5],振动光谱和转动光谱能够得到精确的核间距和基态的势能面.当n》4时,若要得到一个有价值的结果,需要进行很复杂的振动结构分析.对于这类小簇合物只能得到它们的吸收光谱[6-7].因此,计算其垂直激发态就具有非常重要的意义.用量子化学解释簇合物的吸收光谱已成为一个非常诱人的课题[8].从头算对碱金属簇合物的垂直激发态计算,并与实验光谱进行比较,已成功地预测了一些碱金属簇合物的基…  相似文献   

9.
As models for a self-aggregative, naturally occurring magnesium-chlorin bacteriochlorophyll-d possessing 3(1)-secondary alcoholic hydroxyl and 13(1)-oxo groups, zinc-chlorins were synthesized with 3(1)-oxo and 13(1)-secondary (1) or tertiary hydroxyl groups (2). Compared to the monomers in a tetrahydrofuran solution, diastereomers 13(1)R-1R and 13(1)S-1S gave red-shifted absorption maxima (643 --> 674 nm in 1R and 708 nm in 1S) in 1 v/v% CH(2)Cl(2)-hexane solution, indicating their self-aggregation. Therefore, the positioning of the two groups at 3(1)/13(1) or 13(1)/3(1) on the N21-N23 molecular (Q(y)) axis is not necessarily important for the self-aggregation. The (1)H NMR and CD spectroscopic studies showed that the 674 nm absorbing species of 1R was characterized as a face-to-face "closed" dimer, while the 708 nm absorbing species of 1S was a large oligomer constructed with aggregation of head-to-tail "open" dimers. This diastereomeric control over the aggregation of 1R and 1S is more pronounced than that observed in the regioisomerically 3(1)-secondary alcoholic R/S-diastereomers 3R and 3S. The difference is ascribable to the conformational fixation of the 13(1)-hydroxyl group of the exo five-membered ring in 1. In contrast to self-aggregative 3(1)-tertiary alcoholic 4, both 13(1)-epimers of 13(1)-tertiary alcoholic 2 were monomeric even in nonpolar organic media: the additional 13(1)-methyl group (1 --> 2) drastically suppressed the self-aggregation due to the interference of the methyl group in intermolecular pi-pi interaction.  相似文献   

10.
设计了两种新的具有螯形骨架的主体分子反式-1,2-二苯基-1,2-苊二醇(1)和顺式-1,2-二(1'-萘基)-1,2-苊二醇(2),主体(1),(2)可与许多有机小分子化合物形成配位包合物。用IR和粉末XRD表征了主体分子(1)和(2)的包结物,用^1NMR测定了包结物的主客体分子摩尔比:(1)·DMF(1:2),(1)·DMSO(1:2),(1)·THF(1:2),(1)·二氧六环(1:1),(1)·吡啶(1:1),(2)·DMF(1:1)和(2)·DMSO(1:1)。单晶X射线衍射分析了包结物的晶体结构,(1)·DMF:空间群Pnaa,a=0.9377(1)nm,b=1.4351(1)nm,c=4.0463(3)nm;(1)·DMSO:空间群Pbcn,a=1.6278(1)nm,b=1.0751(1)nm,c=1.4980(1)nm;(2)·DMF:P2~1/n,a=0.9796(1)nm,b=1.2377(1)nm,c=2.2344(3)nm,β=93.02(1)°;游离主体(1):空间群P1,a=1.0461(1)nm,b=1.1213(1)nm,c=1.5496(1)nm,α=81.74(1)°,β=75.71(1)°,γ=89.00(1)°;分析了主体分子的刚性和柔韧性对包结性能的影响。并研究了主体分子(1)选择分离细辛挥发油,将顺甲基异丁香酚从挥发油中分离出来。  相似文献   

11.
The magnitude of the one-bond coupling constant between C(1) and H(1) in 2,3-anhydro-O-furanosides has been shown to be sensitive to the stereochemistry at the anomeric center. A panel of 24 compounds was studied and in cases where the anomeric hydrogen is trans to the epoxide moiety, (1)J[C(1)-H(1)] = 163-168 Hz; and when this hydrogen is cis to the oxirane ring, ((1)J[C(1)-H(1)] = 171-174 Hz. In contrast, for 2,3-anhydro-S-glycosides, the size of the (1)J[C(1)-H(1)] is not sensitive to C(1) stereochemistry. Computational studies on all four methyl 2,3-anhydro-O-furanosides (5-8) demonstrated that (1)J[C(1)-H(1)] was inversely proportional to the length of the C(1)-H(1) bond. A previously reported equation, which relates C(1)-H(1) bond distance and atomic charges to (1)J[C(1)-H(1)] magnitudes, could be used to accurately predict the J values in the alpha-lyxo (5) and beta-ribo (8) isomers. In contrast, with the beta-lyxo (6) and alpha-ribo isomers (7), this equation underestimated the size of these coupling constants by 10-20 Hz.  相似文献   

12.
A detailed NMR study and full assignments of the 1H and 13C spectral data for two novel triterpenoid saponins isolated from the stem bark of Pentaclethra macroloba (Willd.) Kuntze are described. Their structures were established using a combination of 1D and 2D NMR techniques including 1H,1H-COSY, TOCSY, NOESY, gs-HMQC and gs-HMBC, and also electrospray ionization mass spectrometry and chemical methods. The structures were established as 3beta-O-([O-beta-D-glucopyranosyl-(1-->2)-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)]-[O-beta-D-glucopyranosyl-(1-->3)-O-beta-D-glucopyranosyl-(1-->4)])-alpha-L-arabinopyranosylhederagenin (1) and 3beta-O-)[O-beta-D-glucopyranosyl-(1-->2)-O-beta-D-glucopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)]-[O-beta-D-glucopyranosyl-(1-->3)-O-beta-D-glucopyranosyl-(1-->4)])-alpha-L-arabinopyranosyloleanolic acid (2).  相似文献   

13.
The interaction of cholesterol with several cyclodextrins (CDs) was investigated in water using solubility method. It was found that heptakis (2,6-di-O-methyl)-beta-CD (DOM-beta-CD) forms two types of soluble complex, with molar ratios of 1 : 1 and 1 : 2 (cholesterol : DOM-beta-CD), and neither a soluble nor insoluble complex is formed between cholesterol and alpha-CD, beta-CD, and gamma-CD, although a minor soluble complex formation was observed between cholesterol and 2-hydroxylpropyl-beta-CD. The thermodynamic parameters for 1 : 1 and 1 : 2 complex formation of cholesterol with DOM-beta-CD obtained from the changes in K with temperature are as follows: DeltaG degrees (1 : 1)=-11.6 kJ/mol at 25 degrees C (K(1 : 1)=1.09x10(2) M(-1)); DeltaH degrees (1 : 1)=-3.38 kJ/mol; TDeltaS degrees (1 : 1)=8.25 kJ/mol; DeltaG degrees (1 : 2)=-27.1 kJ/mol at 25 degrees C (K(1 : 2)=5.68x10(4) M(-1)); DeltaH degrees (1 : 2)=-3.96 kJ/mol; and TDeltaS degrees (1 : 2)=23.2 kJ/mol. The formation of the 1 : 2 complex occurred much more easily than that of the 1 : 1 complex. The driving force for 1 : 1 and 1 : 2 complex formation was considered to be mainly hydrophobic interaction. Also, based on the measurements of proton nuclear magnetic resonance spectra and studies with Corey-Pauling-Koltun atomic models, the probable structutures of the 1 : 2 complex were estimated.  相似文献   

14.
The phosphane (C(6)H(4)-2-CH(2)NMe(2))(3)P (1) upon recrystallization from various solvents yielded the structurally different forms 1A, 1C, 1B(1), and 1B(2). Phosphane oxide (C(6)H(4)-2-CH(2)NOMe(2))(3)PO (2) was obtained from 1 by oxidation with hydrogen peroxide. X-ray analysis provided molecular structures for 1A, 1B(1), 1B(2), and 2. Phosphanes 1A and 1B(1) have pseudohexacoordinate frameworks as a result of the formation of two P-N donor interactions, 1B(2) has a pseudoheptacoordinate geometry due to the presence of three P-N interactions, and 2 resides in a tetrahedral geometry. The presence of the flexible dimethylaminobenzyl group in 1A, 1C, 1B(1), and 1B(2) is reasoned to be responsible for this variation in coordination geometry. Phosphane oxide 2 has very strong donor oxygen atoms from N-oxide groups but they are involved in competition with the presence of hydrogen bonding, which results in the lack of donor coordination. High-resolution (1)H, (13)C, and (31)P NMR measurements are also reported. The results provide evidence for the low-energy threshold required to allow hypercoordinated phosphorus to alter coordination geometry.  相似文献   

15.
Three new triterpenoid saponins, gypsosaponins A-C (1-3), were isolated from the roots of Gypsophila oldhamiana (Caryophyllaceae). Their structures were established as 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl quillaic acid 28-O-alpha-L-arabinopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-methyl-beta-D-glucuronopyranosyl gypsogenin 28-O-beta-D-glucopyranosyl-(1-->3)-[beta-D-xylopyranosyl-(1-->4)]-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (2), and 23-O-beta-D-glucopyranosyl gypsogenic acid 28-O-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (3), on the basis of various spectroscopic analyses and chemical degradations. The biological activities of 1-3 were examined inhibitory activity against pancreatic lipase, which showed inhibition of 58.2%, 99.2% and 50.3% at concentration of 1 mg/ml, respectively.  相似文献   

16.
Oxidation of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD, 1 a) and N,N'-diphenyl-N,N'-bis(2,4-dimethylphenyl)-(1,1'-biphenyl)-4,4'-diamine (1 b) with SbCl(5) affords the corresponding radical cations quantitatively. The crystal and molecular structure of 1 b and [1 b]SbCl(6), the first tetraphenyl benzidene derivatives to be characterised crystallographically in both the neutral and radical cation states, reveal molecular parameters in agreement with the predictions made on the basis of DFT studies. Analysis of the NIR transition in the radical cations [1](+) (.) allows an estimate of the electronic coupling parameter V (1 a(+) (.) 3200 cm(-1); 1 b(+) (.) 3300 cm(-1)), the reorganisation energy lambda(1 a(+) (.) 7500 cm(-1); 1 b(+) (.) 7800 cm(-1)), and the linear coupling constant l (1 a(+) (.) 3100 cm(-1); 1 b(+) (.) 2700 cm(-1)) of the symmetric mode.  相似文献   

17.
Recombinant chicken alpha(1)-acid glycoprotein (alpha(1)-AGP) was prepared by the Escherichia coli expression system and completely deglycosylated alpha(1)-AGP (cd-alpha(1)-AGP) was obtained by treatments of native alpha(1)-AGP with a mixture of endoglycosidase and N-glycosidase. The average molecular masses of chicken alpha(1)-AGP, cd-alpha(1)-AGP and recombinant alpha(1)-AGP were estimated to be about 29 200, 21 700 and 20 700, respectively, by matrix-assisted laser desorption-time of flight-mass spectrometry. We compared the chiral recognition ability of chicken alpha(1)-AGP, cd-alpha(1)-AGP and recombinant alpha(1)-AGP using them as chiral selectors in capillary electrophoresis. The chicken alpha(1)-AGP showed higher resolution for eperisone, pindolol and tolperisone than cd-alpha(1)-AGP or recombinant alpha(1)-AGP. Recombinant alpha(1)-AGP still showed chiral recognition for three basic drugs tested. By addition of propranolol as a competitor in the separation solution in CE, no enantioseparations of three basic drugs were observed with chicken alpha(1)-AGP, cd-alpha(1)-AGP or recombinant alpha(1)-AGP. These results reveal that the protein domain of the chicken alpha(1)-AGP is responsible for the chiral recognition ability, and that the chiral recognition site(s) for basic drugs exists on the protein domain.  相似文献   

18.
The reaction of a mixture of 2-(1-naphthyl)benzothiazoline (HL1) and 2,6-diphenylbenzo[1,2-d:4,5-d']bisthiazoline (H3L2) with nickel(II) acetate tetrahydrate yielded three kinds of square-planar nickel(II) complexes: one nickel(II) complex with innocent ligands ([Ni(L1)2] (1c)) and two nickel(II) complexes with non-innocent ligands ([Ni(L1-L1)] (1a) and [Ni(L1-L2)] (1b)). The complex 1c has two bidentate-N,S ligands, which are formed via ring opening of HL1. On the other hand, the two complexes 1a and 1b contain a tetradentate-N2S2 ligand, which is created via ring opening of HL1 and H3L2, followed by bond formation between imino carbon atoms. Complexes 1a and 1b show very intense absorptions in the near-infrared (NIR) region, characteristic of square-planar complexes with non-innocent ligands. The third nickel(II) complex having a non-innocent tetradentate-N2S2 ligand ([Ni(L2-L2)] (2)) was prepared from H3L2 and nickel(II) acetate tetrahydrate. The electronic spectrum of 2 exhibits a very intense absorption at 981 nm (epsilon = 3.6 x 10(4) M-1 cm-1), which is significantly red-shifted compared with those of 1a (837 nm and 4.4 x 10(4) M-1 cm-1) and 1b (885 nm and 4.5 x 10(4) M-1 cm-1), indicating the presence of an extended pi delocalization. The reaction of 2,6-bis(3,5-dichlorophenyl)benzo[1,2-d:4,5-d']bisthiazoline (H3L3) with nickel(II) acetate tetrahydrate also led to the formation of a nickel(II) complex with a non-innocent ligand ([Ni(L3-L3)] (3)). While complex 3 is analogous to 2, its electrical conductivity is much higher than that of 2. The molecular structures of 1b, 1c, 2, and 3 were determined by X-ray crystallography.  相似文献   

19.
Steroidal oligoglycosides from Solanum nigrum   总被引:5,自引:0,他引:5  
Two new steroidal saponins, named nigrumnins I and II, together with two known saponins were obtained from the whole plant of Solanum nigrum L. On the basis of spectroscopic analysis (1H-NMR, 13C-NMR, 1H-1H COSY, TOCSY, HMQC, HMBC and FAB-MS), nigrumnin I was established as (25R)-5alpha-spirostan-3beta-ol 3-O-betaD-xylopyranosyl-(1-->3)-[alpha-L-arabinopyranosyl-(1 -->2)]-beta-D- glucopyranosyl-(1-->4)-[alpha-L-rhamnopyranosyl(1-->2)]-beta-D- galactopyranoside (1), and nigrumnin II was elucidated as (25R)-3beta,17alpha-dihydroxy-5alpha-spirostan-1 2-one 3-O-beta-D-xylopyranosyl-(1-->3)-[alpha-L-arabinopyranosyl-(1--> 2)]-beta-D-glucopyranosyl-(1-->4)-[alpha-L-rhamnopyra- nosyl-(1-->2)l-beta-D-galactopyranoside (2).  相似文献   

20.
The electronic spectrum in the region 17?500 cm(-1) to 18?850 cm(-1) of a cold molecular beam of TiO(2) has been investigated using laser induced fluorescence (LIF) and mass-resolved resonance enhanced multi-photoionization (REMPI) spectroscopy. Bands at 18?412 cm(-1), 18?470 cm(-1) and 18?655 cm(-1) were recorded at a resolution of 35 MHz, rotationally analyzed, and assigned as the ?(1)B(2) (0,1,2) ←X[combining tilde](1)A(1) (0,0,0), ?(1)B(2) (1,0,0) ←X[combining tilde](1)A(1) (0,0,0) and ?(1)B(2) (1,1,0) ←X[combining tilde](1)A(1) (0,0,0) transitions. The dispersed fluorescence from the ?(1)B(2) (0,1,2) and ?(1)B(2) (1,0,0) levels were combined with previous results to produce an improved set of vibrational parameters for the X[combining tilde](1)A(1) state. The optical Stark effect in the ?(1)B(2) (0,1,2) ←X[combining tilde](1)A(1) (0,0,0) and ?(1)B(2) (1,0,0) ←X[combining tilde](1)A(1) (0,0,0) bands were recorded and combined with earlier results for ?(1)B(2) (1,1,0) ←X[combining tilde](1)A(1) (0,0,0) to determine the permanent electric dipole moment for these states. The origin and harmonic vibrational constants for the ?(1)B(2) state are determined to be: T(000) = 17?593(5) cm(-1), ω(1) = 876(3) cm(-1), ω(2) = 184(1) cm(-1), and ω(3) = 316(2) cm(-1). A normal coordinate analysis was performed and Franck-Condon factors calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号