首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The capillary zone electrophoresis of two common nucleosides, adenosine and inosine, was investigated. Both compounds were resolved in a 0.1 M sodium phosphate buffer, pH 7.5. Contrary to expectations, adenosine behaved at this pH— 5 pH units lower than the literature pKa— as a negative ion, migrating behind mesityloxide (neutral marker) when working in normal polarity mode. To confirm the migration order, peaks were identified from absorption maxima, by high-speed scanning detector. The change in electrophoretic mobility with pH was investigated for the nucleosides, and 10 other background electrolytes were tried to match the separation capabilities of the sodium phosphate buffer. Most inorganic buffers showed comparable separation, while organic, Good-type buffers lacked selectivity.  相似文献   

2.
3.
The influences of buffer pH and the concentration of beta-cyclodextrins (beta-CDs) on the separation and migration behavior of 13 structurally related phenothiazines in CD-modified capillary zone electrophoresis (CD-CZE) using a phosphate background electrolyte at low pH were investigated. We focused on the separation of these phenothiazines, including the enantiomers of chiral analytes, with the use of beta-CD and hydroxypropyl-beta-CD (HP-beta-CD) as electrolyte modifiers or chiral selectors at concentrations less than 8 mM. The results indicate that the interactions of phenothiazines with beta-CDs are very strong and that effective separations of 13 analytes can be achieved with addition of 0.3 mM beta-CD or 0.5 mM HP-beta-CD in a phosphate buffer at pH 3.0. Binding constants of phenothiazines to beta-CDs were evaluated for a better understanding of the interactions of phenothiazines with beta-CDs.  相似文献   

4.
The migration behavior and separation of five benzendiamines, five aminophenols and three benzenediols were investigated in capillary zone electrophoresis. The results indicate that benzendiamines and aminophenols are optimally separated with a phosphate buffer at pH 5, whereas benzenediol isomers are best separated at pH about 12. The addition of surfactant monomers of tetradecyltrimethylammonium bromide to a phosphate buffer at pH 5 under the conditions of reversed electroosmotic flow is effective for separating these dye intermediates, except for the separation of 1,2-benzenediol from 1,3-benzenediol. The addition of sodium tetraborate as an electrolyte modifier is effective in the separation of 1,2-benzenediol from 1,3-benzenediol, but the latter comigrates with the 1,4-benzenediol isomer at pH 5.0. The electrophoretic mobility of ionized analytes can be described with Offord's equation, and the migration order depends on their ratios of charge to mass. In addition, the pKa values of these analytes in 50 mM phosphate buffer are reported.  相似文献   

5.
毛细管区带电泳法拆分手性药物环扁桃酯   总被引:2,自引:0,他引:2  
近年来,随着不同种类的手性添加剂[1]在毛细管电泳(CZE)中的使用,毛细管电泳越来越显示出其强有力的手性拆分性能。具有特殊笼状结构并含有多个手性中心的环糊精及其衍生物是毛细电泳手性分离研究中最常采用的手性添加添[2-4]。本文合成了环糊精衍生物单3 O 苯基胺甲酰基 β CD[2]并以之作为手性选择剂分离了β CD及手性药物环扁桃酯。1 实验部分932 3 HVPS高压电源(山东省化工研究院),DD 2000型可调波长紫外检测器(中国科学院大连化学物理研究所),XWT型记录仪(上海大华仪表厂),pHS 25型酸度计(上海雷磁仪器厂),石英毛细管45cm…  相似文献   

6.
Two simple, rapid, and efficient methods for the analysis of seven antifungal compounds have been developed by capillary zone electrophoresis. Resolutions higher than 1.5 were obtained using 0.025 M phosphate buffer (pH 2.30) (analysis time close to 9 min) or 0.2 M formic acid (pH 2.15) (analysis time close to 6 min), with an applied voltage of 20 kV and a temperature of 30 degrees C. The highest sensitivity and selectivity can be obtained using phosphate buffer but the shortest analysis times are achieved in the formic system. The analytical characteristics of the optimized methods were investigated. The reproducibility obtained for migration times (RSD(n = 10) < or = 1.0%) and peak areas (RSD(n = 10) < or = 4.3%) was acceptable, but better reproducibilities were obtained when verapamil was used as internal standard (RSD(n = 10) < 0.4% for relative migration times and RSD(n = 10) < or = 2.2% for peak area ratios). The lowest limit of detection was obtained for clotrimazole (0.12 microg/ml) and the highest for fluconazole and voriconazole (0.90 microg/ml). The lowest and the highest limits of quantitation were, respectively, 0.40 microg/ml for clotrimazole and 3.00 microg/ml for fluconazole and voriconazole.  相似文献   

7.
When field-enhanced sample stacking was used in capillary zone electrophoresis (CZE) analysis of cations, the decrease of migration time and the reduction of separation window was observed with increase of sample plug length. A simple equation expressing the migration velocity in the stacking process was derived to explain the above phenomenon. From experiments and theoretical consideration, we confirmed that this effect was caused by the higher potential gradient and larger eletroosmotic flow (EOF) mobility at the sample plug than those at the supporting electrolyte. A mathematical model appropriate for the computer simulation of such a system was studied considering the experimental results, and it was concluded that electroosmotic velocity (v(eof)) should be introduced to the equation of continuity as a constant.  相似文献   

8.
9.
A method for capillary electrophoretic enantiomeric separation of a racemic clenbuterol has been established with hydroxypropyl-β-cyclodextrin as the chiral selector. General equations and data analysis are presented to relate mobility to the equilibrium constants in simple binding equilibria and used to determine binding constants and thermodynamic parameters for host-guest complexation of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin as a selector. The effects of β-cyclodextrin type and concentration, buffer type, concentration and pH, as well as separation voltage and capillary temperature were investigated in detail. A maximal resolution of 6.78 was obtained. The binding constants of the host-guest complex of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin, K R-CD and K S-CD are 22.50 and 43.09 l mol-1, respectively.  相似文献   

10.
Separation of 6Li and 7Li isotopes by CZE was demonstrated. The BGE contained 5 mM 4‐aminopyridine, 0.9 mM oxalic acid, 0.25 mM CTAB, and 0.25% w/v Tween 20 (рН = 9.2). The running conditions were +25 kV at 30°C with indirect photometric detection at 261 nm. Under optimal experimental conditions, the analysis time was less than 21 min. Separation of Li preparations with mole fraction of 6Li ranging from 3.44 up to 90.38% was demonstrated.  相似文献   

11.
12.
《Analytica chimica acta》2002,458(2):355-366
The effect of pH and ionic strength on the migration of neutral acids in capillary zone electrophoresis (CZE) has been studied for several phenols. The mobilities of the phenols and the efficiency of the capillary have been related to the studied factors. The mobility can be related to the pH of the running buffer through the mobility of the phenolate ion, and the conditional acidity pK value of the phenol at the working ionic strength. This allows prediction of the migration of the phenol, solely from its pKa value (literature pKa corrected for the ionic strength of the solution) and mobility of the anion, which can be easily calculated from the mobility at a basic pH value and the pKa value. Combination of the predicted mobility with the efficiency allows estimation of the resolution of the consecutive peaks obtained for a mixture of phenols. This method has been tested for two groups of phenols of environmental interest.  相似文献   

13.
This article discusses the main approaches to the manipulation of the separation selectivity of inorganic and low-molecular-mass anions in capillary zone electrophoresis (CZE). Physical or instrumental effects such as the detection mode, the sampling mode, the separation voltage, and the temperature are easy to control but their influence on selectivity is generally minimal, except for the use of selective detection. Selectivity effects arising from chemical parameters (i.e. effective size and charge, and structure of analyte; the pH, surfactant type and content, polyelectrolyte content, organic solvent content of the electrolyte; capillary treatment; and complexing agents) are much more significant than those resulting from physical effects. The effects on separation selectivity exerted by some of the above parameters can be complex, so that manipulation of selectivity in CZE of anionic solutes is often difficult. Nonetheless, many practical applications can be performed through the judicious control of parameters noted in this review. Some practical limitations to selectivity manipulation are highlighted and possible areas that can be studied in the future for selectivity control are noted.  相似文献   

14.
Separation of DNA by length using CGE is a mature field. Separation of DNA by sequence, in contrast, is a more difficult problem. Existing techniques generally rely upon changes in intrinsic or induced differences in conformation. Previous work in our group showed that sets of ssDNA of the same length differing in sequence by as little as a single base could be separated by CZE using simple buffers at high ionic strength. Here, we explore the basis of the separation using circular dichroism spectroscopy, fluorescence anisotropy, and small angle X-ray scattering. The results reveal sequence-dependent differences among the same length strands, but the trends in the differences are not correlated to the migration order of the strands in the CZE separation. They also indicate that the separation is based on intrinsic differences among the strands that do not change with increasing ionic strength; rather, increasing ionic strength has a greater effect on electroosmotic mobility in the normal direction than on electrophoretic mobility of the strands in the reverse direction. This increases the migration time of the strands in the normal direction, allowing more time for the same-length strands to be teased apart based on very small differences in the intrinsic properties of the strands of different sequence. Regression analysis was used to model the intrinsic differences among DNA strands in order to gain insight into the relationship between mobility and sequence that underlies the separation.  相似文献   

15.
A chiral separation method for glycidol enantiomers determination by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry was developed. Two chiral stationary phases, amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) and (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl) ethylamine (SUMICHIRAL OA-4900) have been investigated. The effects of the mobile phase composition, elution program and column temperature were also studied. Under the best conditions: Chiralpak AD-H column, mobile phase composition n-hexane:ethanol (70:30, v/v), flow rate of 0.8 mL/min and 40 °C column temperature, a good resolution (Rs = 1.6) for both enantiomers has been achieved with an analysis time of 16 min. The method was found to be linear in the range from 100 to 500 ppm for both glycidol enantiomers with a good determination coefficient (r2 higher than 0.99) and good precision. Limits of detection of 31 and 50 ppm for (R)-(+)-glycidol and (S)-(−)-glycidol, respectively, were obtained. The method was applied to the determination of the enantiomeric excess and yield obtained in a asymmetric epoxidation process of allyl alcohol with a chiral titanium-tartrate complex as catalyst.  相似文献   

16.
程晓昆  王利娟  杨更亮  程佳  张轶华 《色谱》2010,28(11):1089-1093
建立了匹伐他汀钙对映体的毛细管区带电泳(CZE)拆分方法。分别考察了电泳电压,缓冲溶液种类、浓度及pH值,环糊精种类及浓度,添加剂种类及浓度等参数对实验结果的影响,从而确定了匹伐他汀钙对映体的最佳拆分条件: 电泳电压为18 kV;运行缓冲溶液为80 mmol/L的Tris-HCl缓冲体系,pH值为3.20,其中含有50 mmol/L HP-β-CD(羟丙基-β-环糊精)和5 mmol/L SDS(十二烷基磺酸钠);采用重力进样,进样高度17 cm,进样时间为2 s。在优化的实验条件下,匹伐他汀钙对映体得到了较好的分离,分离度可达2.17。实验结果表明该方法可用于匹伐他汀钙对映体的分离,具有快速、便捷、准确性好等优点。  相似文献   

17.
A new capillary electrophoretic approach for simultaneous separation of fast anions and cations is demonstrated. Indirect UV detection at 214 nm in conjunction with electromigration sampling from both ends of the capillary was developed. Two electrolyte systems based on imidazole-nitrate and copper(II)-ethylenediamine-nitrate were investigated for the simultaneous separation of chloride, sulphate, hydrocarbonate, potassium, ammonium, calcium, sodium and magnesium ions. Experimental parameters that were evaluated included a nature of UV chromophore, pH of electrolyte, a nature of complexing agent. The method permits the excellent separation of three anions and five cations in only 4 min using electrolyte system containing 2.5 mmol l−1 Cu(NO3)2, 5 mmol l−1 ethylenediamine and 1 mmol l−1 fumaric acid at pH 8.5 adjusted with tetraethylammonium hydroxide.  相似文献   

18.
Cyclodextrin-modified capillary zone electrophoresis (CD-CZE) was applied successfully to the enantiomeric and isomeric separation of three herbicides (imazaquin, diclofop and imazamethabenz). Commercially available cyclodextrins were evaluated for separation of the enantiomers and isomers of the three herbicides having varied molecular structures. The enantiomers of imazaquin and diclofop, and the isomers of imazamethabenz could be resolved with a resolution of ≥1.5. The resolution was found to depend on pH of the run buffer, cyclodextrin type and cyclodextrin concentration. By employing mixed cyclodextrins in the running buffer, the three herbicides were simultaneously separated in a single run. In addition, rapid (less than 3 min) enantiomeric separation is demonstrated using imazaquin as a model herbicide. The reported capillary electrophoresis (CE) methods are simple, rapid, efficient and reproducible and our results demonstrate that CE provides a powerful analytical tool for enantiomeric and isomeric separation of herbicides.  相似文献   

19.
应用环糊精-毛细管区带电泳体系对手性药物盐酸美西律和盐酸异博定的对映体分离进行了研究。结果表明, 在所研究的手性选择剂α-环糊精, β-环糊精, 二甲基-β-环糊精, 羟丙基β-环糊精和γ-环糊精中, 羟丙基β-环糊精对所研究的手性药物分离效果较好。对盐酸美西律和盐酸异博定的最佳羟丙基-β-环糊精浓度分别为30mmol/L和9mmol/L, 最佳缓冲溶液浓度为100mmol/L Tris-H3PO4(pH2.3)。向缓冲溶液中加入0.05%羟丙基纤维素(HPLC)可改善分离。盐酸美西律获得了接近基线的手性分离, 而盐酸异博定亦获得了较好的分离。  相似文献   

20.
The behaviour of four biologically relevant selenium compounds (Se(VI), Se(IV), selenomethionine and selenocystine) in capillary zone electrophoresis (CZE) was investigated. Parameters which affect the separation, detection and sample introduction were investigated to improve the sensitivity of the analysis. Short-term repeatability was evaluated and detection limits were found to be in the g·l–1 range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号