首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the model of an infrared metamaterial absorber composed of metallic leaf-shaped cells, dielectric substrate, and continuous metallic film. Numerical simulation confirms an absorptivity of 99.3% at the infrared frequency of 126.7 THz with this metamaterial model. The proposed metamaterial absorber could be fabricated with an electrochemical deposition technique. Our simulated results show the absorption feature of this metamaterial absorber could be well manipulated with different incident angles and radiation modes. The optical metamaterial absorber proposed in this paper has potential applications such as infrared imaging devices, thermal bolometers, wavelength-selective radiators, and optical bistable switches.  相似文献   

2.
A tunable broadband metamaterial absorber is demonstrated at microwave frequencies in this paper.The metamaterial absorber is composed of ferrite slabs with large resonance beamwidths and a copper wire.The theoretical analysis for the effective media parameters is presented to show the mechanism for achieving the perfect absorptivity characteristic.The numerical results of transmission,reflectance,and absorptivity indicate that the metamaterial absorber exhibits a near perfect impedance-match to free space and a high absorptivity of 98.2% for one layer and 99.97% for two layers at 9.9 GHz.The bandwidth with the absorptivity above 90% is about 2.3 GHz.Moreover,the absorption band can be shifted linearly in a wide frequency range by adjusting the magnetic bias.This metamaterial absorber opens a way to prepare perfectly matched layers for engineering applications.  相似文献   

3.
The paper presents multi-sector stable IR grey body radiation source, that can be used for testing of MRT. Its main element is monolithic metal plate with a test pattern, made of material with high thermal conductivity. On the surface of the test plate the sectors of different emissivity are created during manufacturing process. As a result when viewed by a thermal camera those sectors exhibit thermal contrast depending mainly on the radiative properties of each sector. The value of thermal contrast between particular sectors can be adjusted by changing the temperature of a test plate with respect to ambient. The emissivity values of particular sectors have been calculated and the procedure of adjusting the thermal contrast has been described, as well as the technology used to create the test plate. The model of described emitter has been tested and the results of temperature values obtained from thermal camera were compared with theoretical, calculated figures. The proposed emitter is dedicated for testing and calibrating of modern observations IR systems.  相似文献   

4.
球形开口空腔在辐射计量、辐射定标和激光能量测量等方面得到了广泛应用。当考虑辐射热交换时,实际的发射率是一个很重要的参数。由于辐射能在壁面进行了多次反射吸收,所以开口空腔系统吸收的能量要比相同尺寸和相同发射率的平板吸收的能量大。这种由于辐射在空腔内多次反射和吸收使表面吸收率和表面发射率都增大的现象称之为“空腔效应”。针对空腔效应,引入有效辐射和视在发射率概念,通过球形开口空腔的视在发射率简单计算了开口空腔的辐射热损失。  相似文献   

5.
《Current Applied Physics》2019,19(11):1164-1171
In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and polarization-insensitivity is proposed. The MMA consists of two copper layers with a layer of FR-4 between them. And its top layer consists of a cross-shaped resonator and a square ring resonator. The calculation result demonstrates that there are two distinct absorption peaks, whose absorptivity are 99.933% at 3.8441 GHz and 99.99% at 9.1094 GHz. And its thickness is only 1.34% of the wavelength of the lowest absorption frequency. The dual-band MMA shows polarization-insensitivity for normal incident wave and shows high absorptivity in a wide incident angle for both TE and TM polarization wave. In addition, we discuss the working mechanism. The influences of main parameters on the dual-band MMA's absorption are also analyzed. The proposed ultra-thin MMA has simple structure and high absorptivity, which has many potential applications, such as thermal radiometer, detection sensor, stealth technology.  相似文献   

6.
《Physics letters. A》2019,383(36):126025
The broadband absorber at the wavelength range from 8 to 13 μm has attracted much attention because this range is exactly the infrared transparency window of the atmosphere. In this Letter, we propose a new structure of ultra-broadband absorber, which is composed of a periodic array of single-sized titanium (Ti) patches and a sandwich (Ti/SiO2/Ti) plane. In the infrared transparency window of the atmosphere, the structure proposed can achieve nearly perfect absorption with the maximal absorptivity up to 99% for the wavelength range from 9.77 to 10.69 μm, and a high average absorptivity of 96.7% from 8 to 13 μm. The strongly localized electric field, at the interface of the top thin Ti film and the dielectric spacer of sandwich plane, leads to the ultra-broadband high absorption. In addition, this structure demonstrates the insensitivity of polarization and oblique angle. This metamaterial absorber with high performances in both bandwidth and absorptivity shows a promising prospect in applications such as thermal emitters, thermal coolers, and infrared sensors.  相似文献   

7.
We study the spontaneous emission of a dipole emitter imbedded into a layered metal-dielectric metamaterial. We demonstrate ultra-high values of the Purcell factor in such structures due to a high density of states with hyperbolic isofrequency surfaces. We reveal that the traditional effective-medium approach greatly underestimates the value of the Purcell factor due to the presence of an effective nonlocality, and we present an analytical model which agrees well with numerical calculations.  相似文献   

8.
Perfect metamaterial absorber based on a split-ring-cross resonator   总被引:1,自引:0,他引:1  
In this paper, we present a polarization-insensitive metamaterial (MM) absorber which is composed of the dielectric substrate sandwiched with split-ring-cross resonator (SRCR) and continuous metal film. The MM absorber is not limited by the quarter-wavelength thickness and can achieve near-unity absorbance by properly assembling the sandwiched structure. Microwave experiments demonstrate the maximum absorptivity to be about 99% around 10.91 GHz for incident wave with different polarizations. The surface currents distributions of the resonance structure are discussed to look into the resonance mechanism. Importantly, our absorber is only 0.4 mm thick, and numerical simulations confirm that the MM absorber could achieve very high absorptivity at wide angles of incidence for both transverse electric (TE) wave and transverse magnetic (TM) wave. The sandwiched structure is also suitable for designing of a THz and even higher frequency MM absorber, and simulations demonstrate the absorption of 99% at 1.105 THz.  相似文献   

9.
In this paper, a broadband metamaterial absorber is successfully designed by a three-dimensional structure. And the three-dimensional absorber is just obtained by a two-dimensional structure which rotates 90°along x-axis. The simulated results show that the absorption of the three-dimensional metamaterial absorber is much better than the two-dimensional absorber. Moreover, the absorber is polarization-sensitive for the incident electromagnetic waves due to the asymmetry of the structure. Compared with the Y-polarization wave, the proposed absorber can realize broadband absorption with greater than 90% from 355.6 to 737.7 THz for X-polarized wave. Finally, based on the analysis of the electric field and surface current distributions, it can demonstrate that the localized surface plasmons and dipoles resonances will play an important role in the broadband absorption. And we believe that the metamaterial absorber will have many potential applications in emitter and energy harvesting.  相似文献   

10.
《中国物理 B》2021,30(6):64214-064214
A tunable selective emitter with hollow zigzag SiO_2 metamaterials, which are deposited on Si_3 N_4 and Ag film, is proposed and numerically investigated for achieving excellent radiative cooling effects. The average emissivity reaches a high value of 98.7% in the atmospheric window and possesses a high reflectivity of 92.0% in the solar spectrum. To reveal the enhanced absorptivity, the confined electric field distribution is investigated, and it can be well explained by moth eye effects. Moreover, tunable emissivity can also be initiated with different incident angles and it stays above 83% when the incident angle is less than 80°, embodying the excellent cooling performance in the atmospheric transparency window.Its net cooling power achieves 100.6 W·m~(-2), with a temperature drop of 13°, and the cooling behavior can persist in the presence of non-radiative heat exchange conditions. Therefore, high and tunable selective emitters based on our designed structure could provide a new route to realizing high-performance radiative cooling. This work is also of great significance for saving energy and environmental protection.  相似文献   

11.
The mechanism that limits the emission current of a carbon-nanotube-based cathode due to the temperature dependence of the emissivity of the nanotube is studied. This limitation has the character of thermal instability that shows up as an infinite increase in the emitter temperature after a certain emission current is exceeded. The heat conduction equation is solved for a nanotube at various model temperature dependences of the thermal and electrical conductivities of the nanotube in order to derive the limiting emission current as a function of the electrical conductivity of the nanotube.  相似文献   

12.
本文分析了电环形谐振腔的几何参数对超材料吸收体吸收率的影响。文中详细分析了电环形谐振腔参数、介电层(间隔物)厚度和电环形谐振腔厚度对超材料吸收体的影响,在此基础上,设置正交实验分析了几种参数的综合影响,最终获得超材料的理论吸收率。根据上述结果,制备了2个超材料吸收体的原理样机,经实验测得,原理样机的窄带吸收率高于98%。本文的研究成果为高性能吸收器的设计提供了指导。  相似文献   

13.
王磊  葛士军  陈召宪  胡伟  陆延青 《中国物理 B》2016,25(9):94222-094222
Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices.The middle dielectric layer of conventional metamaterial absorbers has always been solid.Researchers could not detect the near field distribution in this layer or utilize it effectively.Here,we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers.We demonstrate strong,position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber.We measure the terahertz far-field absorption as the driving voltage increases.By combining experimental results with liquid crystal simulations,we verify the near-field distribution in the middle layer indirectly and bridge the nearfield and far-field observations.Our work opens new opportunities for creating high-performance,fast,tunable,terahertz metamaterial devices that can be applied in biological imaging and sensing.  相似文献   

14.
研究了硼掺杂硅(记为Si-19)薄膜和半无限大物体(Si-19和SiC)在100 nm真空间距下的近场辐射换热随薄膜厚度的变化。研究结果表明,当半无限大物体和薄膜为相同的Si-19材料时,由于表面波激发并相互耦合,使得近场辐射换热随薄膜的厚度变化比较复杂。当半无限大物体为SiC材料时,由于表面波的耦合遭到破坏以及辐射体的高发射率频率区和吸收体的高吸收率频率区不匹配,导致表面波的激发对不同材料间的近场辐射换热的增强程度降低,因此在相同计算区域内热流密度随厚度的增加单调增加,没有出现极值点。  相似文献   

15.
宽带透射吸收极化无关超材料吸波体   总被引:2,自引:0,他引:2       下载免费PDF全文
鲁磊  屈绍波  施宏宇  张安学  夏颂  徐卓  张介秋 《物理学报》2014,63(2):28103-028103
提出了一种新的基于磁性吸波体材料的具有低频透射和高频宽带吸收特性的超材料吸波体.该超材料吸波体在1 GHz的透射系数为-0.5 dB,具有较好的低频透射特性,可以实现对低频信号的相互通信;在频率大于8.4 GHz的频段,吸收率均大于80%,基本覆盖整个X波段和Ku波段,实现高频宽带吸收.此外,由于该超材料吸波体的单元金属周期结构具有较好的四重旋转对称性,因而是极化无关的.该透射吸收超材料吸波体设计简单,实用性强,具有较强的潜在应用价值.  相似文献   

16.
基于阻抗匹配条件的树枝状超材料吸收器   总被引:1,自引:0,他引:1       下载免费PDF全文
张燕萍  赵晓鹏  保石  罗春荣 《物理学报》2010,59(9):6078-6083
基于树枝状金属结构单元的电磁谐振特性,设计了一种双面大小树枝状结构的超材料吸收器,该结构分别是正面二级树枝及正对的背面三级树枝.通过仿真模拟设计了不同的阻抗匹配方式,调节相应的结构参数,找到了阻抗匹配对吸收特性的影响.在最佳的阻抗匹配条件下,得到最大吸收率.实验测量表明,阻抗匹配条件下双面大小树枝模型可以实现90.01%吸收率.增加样品层数可以有效的增加吸收率,3层样品就可以达到99%以上的吸收率,实现工程意义的完美吸收.  相似文献   

17.
鲁磊  屈绍波  苏兮  尚耀波  张介秋  柏鹏 《物理学报》2013,62(20):208103-208103
仿真和实验验证了厚度极薄的平面结构超材料吸波体, 该吸波体采用加载交指电容的耶路撒冷十字结构, 通过增加单元间的耦合电容显著降低了其工作频率. 测试结果表明, 该超材料吸波体在1.58 GHz, 吸收率峰值为88.48%, 其厚度为2 mm, 约为1/95工作波长, 吸波体的单元尺寸为11 mm, 约为1/17工作波长. 此外, 通过金属通孔将耶路撒冷十字结构与金属底板相连接, 使其对斜入射横电和横磁极化电磁波具有宽角度吸收特性, 在60°时依然具有较高的吸收率, 且吸收峰频率几乎不发生偏移, 从而使其更具实用价值. 关键词: 极薄 宽角度 超材料吸波体  相似文献   

18.
Xiaomin Hua 《中国物理 B》2021,30(8):84202-084202
Narrow band mid-infrared (MIR) absorption is highly desired in thermal emitter and sensing applications. We theoretically demonstrate that the perfect absorption at infrared frequencies can be achieved and controlled around the surface phonon resonance frequency of silicon carbide (SiC). The photonic heterostructure is composed of a distributed Bragg reflector (DBR)/germanium (Ge) cavity/SiC on top of a Ge substrate. Full-wave simulation results illustrate that the Tamm phonon-polaritons electric field can locally concentrate between the Ge cavity and the SiC film, contributed to the improved light-phonon interactions with an enhancement of light absorption. The structure has planar geometry and does not require nano-patterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles. Their absorption lines are tunable via engineering of the photon band-structure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber.  相似文献   

19.
Arising from the proposed Transmission Line(TL) model for ERR and wire structure, a TL model for a metamaterial absorber is proposed. The S-parameters obtained by this TL model demonstrate the same shapes as the simulation. An investigation of the TL model and average absorption power densities shows that the metamaterial absorber does not simply convert the electromagnetic wave into thermal energy, but concen- trate the electromagnetic wave into a small space where it is finally absorbed. This suggests that the metamaterial absorber can be applied to solar cells for the purpose of light trapping.  相似文献   

20.
We review some of the techniques that lead to the effective medium representation of a three-dimensional (3D) periodic metamaterial. We consider a 3D lattice of lead telluride cubic resonators at mid-infrared (MIR) frequencies. Each cubic resonator is modeled with both an electric and a magnetic dipole, through a method called the dual dipole approximation. The electric and magnetic polarizabilities of a cubic resonator are computed via full-wave simulations by mapping the resonator's scattered field under electric/magnetic excitation only to the field radiated by an equivalent electric/magnetic dipole. We then analyze the allowed modes in the lattice, with transverse polarization and complex wavenumber, highlighting the attenuation that each mode experiences after one free space wavelength. We observe the presence of two modes with low attenuation constant, dominant in different frequency ranges, able to propagate inside the lattice: this allows the treatment of the metamaterial as a homogeneous material with effective parameters, evaluated by using various techniques. We then show that the metamaterial under analysis allows for the generation of artificial magnetism (i.e., relative effective permeability different than unity, including negative permeability with low losses) at MIR frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号