首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
单层FeSe/SrTiO3界面增强超导的发现为理解高温超导机理提供了一个新的途径,也为实现新的高温超导体开拓了新思路.本文通过在SrTiO3(001)表面高温沉积Mg进而沉积单层FeSe薄膜,制备出了FeSe/MgO双层/SrTiO3异质结.利用扫描隧道显微镜研究了异质结的电学及超导特性,观测到约14–15 meV的超导能隙,比体相FeSe超导能隙值增大了5–6倍,与K掺杂双层FeSe/SrTiO3的超导能隙值相当.这一结果可理解为能带弯曲造成的界面电荷转移和界面处电声耦合共同作用导致的超导增强.FeSe/MgO界面是继FeSe/TiO2之后的一个新界面超导体系,为研究界面高温超导机理提供了新载体.  相似文献   

2.
We report the tip-induced superconductivity on the topological semimetal NbSb2, similar to the observation on TaAs2 and NbAs2. Belonging to the same family of MPn2, all these materials possess similar band structures, indicating that the tip-induced superconductivity may be closely related to their topological nature and share a common mechanism. Further analysis suggests that a bulk band should play the dominant role in such local superconductivity most likely through interface coupling. In addition, the compatibility between the induced superconductivity and tips’ ferromagnetism gives an evidence for its unconventional nature. These results provide further clues to elucidate the mechanism of the tip-induced superconductivity observed in topological materials.  相似文献   

3.
The heat capacity of lead embedded in glass nanopores (7 nm in diameter) and bulk lead was studied in the temperature range 2–40 K without a magnetic field and in magnetic fields of 1–8 T. The properties of lead nanoparticles and bulk lead were compared. The results obtained allowed us to separate the surface superconductivity from the volume superconductivity. The temperature dependence of the heat capacity of lead nanoparticles was shown to exhibit two superconducting transitions above and below the transition temperature for bulk lead (T c = 7.2 K), which are associated with the surface and volume superconductivity. The upper critical fields H c3 for the surface superconductivity and H c2 for the volume superconductivity were determined. It turned out that these fields for Pb nanoparticles are two orders of magnitude higher than those for bulk lead. The “superconductor-normal metal” phase diagrams were constructed for lead nanoparticles. The study established an increase in the density of low-frequency excitations in Pb nanocrystals as compared to bulk Pb and a difference in the electronic heat capacity of Pb nanoparticles as compared to bulk Pb.  相似文献   

4.
文章细致研究了超导体铟/一维锌超导纳米线阵列/超导体铟夹心结构的超导电性.实验发现,当锌纳米线的长度在2—6μm、直径等于40nm时,宏观尺寸的超导体铟电极对中间的锌纳米线的超导电性具有反常的抑制作用,即当铟处在超导态时,中间的锌纳米线则停留在正常态.如果施加一个磁场,使超导体铟电极变为正常态,锌纳米线则恢复其超导电性,这种奇异的现象与超导电极材料的类型及锌纳米线的直径和长度有关。  相似文献   

5.
周文平  云国宏  梁希侠 《中国物理 B》2009,18(12):5496-5500
The eigenproblems of spin waves in a symmetrical ferromagnetic bilayered system with periodic boundary conditions are solved using the interface-rescaling approach (IRA). The results show that interface coupling between two sublayers would not change the excitation energy of odd bulk modes, but change excitation energy of even bulk modes. We call this peculiar phenomenon the phenomenon of even bulk mode variance (PEBMV). There are two kinds of mechanisms which cause PEBMV: phase reversal and phase translation of the magnon at the interface, corresponding, respectively, to the antiferromagnetic and ferromagnetic interface coupling cases. PEBMV embodies the selective effect of the interface on different bulk magnons.  相似文献   

6.
通过高压电阻测量,发现了拓扑绝缘体化合物BizTe3压力诱导的超导性,在3-6GPa的压力范围内,超导临界温度L约为3K.高压下原位同步辐射的结果证明这个超导相来源于常压相结构.通过霍尔效应的测量,发现超导的Bi2Te3样品的载流子为P型.对高压同步辐射结果Reitveld精修得到的晶格参数和原子位置,并以此进行第一性...  相似文献   

7.
The minimal magnetic field H(c2) destroying superconductivity in the bulk of a superconductor is smaller than the magnetic field H(c3) needed to destroy surface superconductivity if the surface of a superconductor coincides with one of the crystallographic planes and is parallel to the external magnetic field. While for a dirty single-band superconductor the ratio of H(c3) to H(c2) is a universal temperature-independent constant 1.6946, for dirty two-band superconductors this is not the case. I show that in the latter case the interaction of the two bands leads to a novel scenario with the ratio H(c3)/H(c2) varying with temperature and taking values larger and smaller than 1.6946. The results are applied to MgB(2) and compared with recent experiments (A. Rydh, cond-mat/0307445).  相似文献   

8.
A model has been developed to describe the influence of vacancy electromigration in the bulk of joined conducting materials under applied electric current on the shape stability of a flat interface between them. A system of equations is formulated and solved to describe the relationship between changes in the interface profile and mechanical stresses arising in it due to ion and vacancy fluxes, induced by a small spatially periodic perturbation of the interface. Criteria of the perturbation amplitude growth with time, i.e., the shape instability conditions for the interface, are determined. A more detailed analysis and estimation are performed for two special cases: in the first case the interface is between two similar materials, and in the other the mobility of ions and vacancies in one of the materials can be neglected. Perturbation wavelength ranges are determined and studied analytically for these cases; within the intervals the bulk vacancy electromigration is the main factor that leads to the growth of perturbation amplitude and mechanical stresses along the interface with time. Conditions for the existence of such ranges and dependences of their boundaries on the current direction and current density are determined. Particular wavelength and current density ranges of the interface instability are estimated. The estimates show that the interface instability due to bulk electromigration is possible under reasonable (experimentally and practically) conditions in terms of temperature (~100°C), current density (~1010 ? 1012 A/m2), and perturbation wavelength (~101 ? 103 μm). The obtained results may be useful, e.g., for improving the reliability and lifetime of micro- and nanoelectronic components.  相似文献   

9.
Observations are made of metastable supercooled normal bulk states in lead samples. It is demonstrated that such states are realized when the critical field of surface superconductivity Hc3 is lower than the critical field Hc and in the opposite case. Therefore, the surface superconductivity is not a nucleus with supercritical parameters for the bulk superconductivity.  相似文献   

10.
Mengwu Huo 《中国物理 B》2022,31(10):107401-107401
Superconductivity has been realized in films of La1-xSrxNiO2. Here we report synthesis and characterization of polycrystalline samples of La1-xSrxNiO3 and La1-xSrxNiO2 (0 ≤ x ≤ 0.2). Magnetization and resistivity measurements reveal that La1-xSrxNiO3 are paramagnetic metal and La1-xSrxNiO2 exhibit an insulating behavior. Superconductivity is not detected in bulk samples of La1-xSrxNiO2. The absence of superconductivity in bulk La1-xSrxNiO2 may be due to the generation of hydroxide during reduction, a small amount of nickel impurity, or incomplete reduction of apical oxygen. The effect of interface in films of La1-xSrxNiO2 may also play a role for superconductivity.  相似文献   

11.
We present magnetotransport studies on a series of BaFe_(2-x)Ni_xAs_2(0.03 ≤ x ≤ 0.10) single crystals. In the underdoped(x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity(FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped(x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order.  相似文献   

12.
《Physics letters. A》2001,281(1):44-47
The theory of hole superconductivity proposes that the fundamental asymmetry between electrons and holes in solids is responsible for superconductivity. Here we point out a remarkable consequence of this theory: a tendency for negative charge to be expelled from the bulk of the superconductor towards the surface. Experimentally observable consequences of this physics are discussed.  相似文献   

13.
Transport measurements were made on a system consisting of a zinc nanowire array sandwiched between two bulk superconducting electrodes (Sn or In). It was found that the superconductivity of Zn nanowires of 40 nm diameter is suppressed either completely or partially by the superconducting electrodes. When the electrodes are driven into their normal state by a magnetic field, the nanowires switch back to their superconducting state. This phenomenon is significantly weakened when one of the two superconducting electrodes is replaced by a normal metal. The phenomenon is not seen in wires with diameters equal to or thicker than 70 nm.  相似文献   

14.
We report here our observation of superconductivity in a new quaternary borocarbide system R–Re–B–C (R=Y, Gd, Tb and Lu). Samples of the nominal compositions RReBC exhibit superconductivity with Tc≈6 K in LuReBC which is high for an intermetallic. TbReBC and GdReBC exhibit superconductivity at ≈4 K. A magnetic transition is also observed in TbReBC around 30 K. From our measurements, we infer that superconductivity originates from a bulk quaternary superconducting phase in these materials.  相似文献   

15.
Experimental support is found for the multiband model of the superconductivity in the recently discovered system MgB(2) with the transition temperature T(c) = 39 K. By means of Andreev reflection, evidence is obtained for two distinct superconducting energy gaps. The sizes of the two gaps ( Delta(S) = 2.8 meV and Delta(L) = 7 meV) are, respectively, smaller and larger than the expected weak coupling value. Because of the temperature smearing of the spectra the two gaps are hardly distinguishable at elevated temperatures, but when a magnetic field is applied the presence of two gaps can be demonstrated close to the bulk T(c) in the raw data.  相似文献   

16.
We report measurements of the 115In nuclear spin-lattice relaxation rate ( 1/T1) between T = 0.09 and 100 K in the new heavy fermion (HF) compound CeIrIn5. At 0.4 < or = T< or = 100 K, 1/T1 is strongly T-dependent, which indicates that CeIrIn5 is much more itinerant than known Ce-based HFs. We find that 1/T1T, subtracting that for LaIrIn5, follows a (1 / T+straight theta)3/4 variation with straight theta = 8 K. We argue that this novel feature points to anisotropic, due to a layered crystal structure, spin fluctuations near a magnetic ordering. The bulk superconductivity sets in at 0.40 K below which the coherence peak is absent and 1/T1 follows a T3 variation, which suggests unconventional superconductivity with line-node gap.  相似文献   

17.
We report the magnetic proximity effect in a ferrimagnetic Fe(3)O(4) core/ferrimagnetic γ-Mn(2)O(3) shell nanoparticle system, in terms of an enhancement of the Curie temperature (T(c)) of the γ-Mn(2)O(3) shell (~66 K) compared to its bulk value (~40 K), and the presence of magnetic ordering in its so-called paramagnetic region (i.e. above 66 K). The ferrimagnetic nature of both core and shell has been found from a neutron diffraction study. The origin of these two features of the magnetic proximity effect has been ascribed to the proximity of the γ-Mn(2)O(3) shell with a high-T(c) Fe(3)O(4) core (~858 K in bulk form) and an interface exchange coupling between core and shell. Interestingly, we did not observe any exchange bias effect, which has been interpreted as a signature of a weak interface exchange coupling between core and shell. The present study brings out the importance of the relative strength of the interface coupling in governing the simultaneous occurrence of the magnetic proximity effect and the exchange bias phenomenon in a single system.  相似文献   

18.
We report the coexistence of ferromagnetic order and superconductivity in UCoGe at ambient pressure. Magnetization measurements show that UCoGe is a weak ferromagnet with a Curie temperature T(C)=3 K and a small ordered moment m(0)=0.03 micro(B). Superconductivity is observed with a resistive transition temperature T(s)=0.8 K for the best sample. Thermal-expansion and specific-heat measurements provide solid evidence for bulk magnetism and superconductivity. The proximity to a ferromagnetic instability, the defect sensitivity of T(s), and the absence of Pauli limiting, suggest triplet superconductivity mediated by critical ferromagnetic fluctuations.  相似文献   

19.
It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe_3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe_3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe_(3-x)Se_x single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ_0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ_0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe_(3-x)Se_x,which indicates conventional superconductivity despite of the existence of a CDW QCP.  相似文献   

20.
By applying pressure on the topological insulator Bi2Te3 single crystal, superconducting phase was found without a crystal structure phase transition. The new superconducting phase is under the pressure range of 3 GPa to 6 GPa. The high pressure Hall effect measurements indicated that the superconductivity caused by bulk hole pockets. The high pressure structure investigations with synchrotron X-ray diffraction indicated that the superconducting phase is of similar structure to that of ambient phase structure with only slight change with lattice parameter and internal atomic position. The topological band structures indicate the superconducting phase under high pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Diractype surface states. We also discussed the possibility that the bulk state could be a topological superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号