首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Silica dispersions stabilized by a nonionic surfactant, dodecyl hexaethylene glycol monoether (C 12E 6), were studied using rheological measurements. The viscosity-shear rate flow behavior of silica in monoethylene glycol (MEG) is shear thinning at low shear rates, leading to a Newtonian plateau at high shear rates for all dispersions studied. All rheological properties showed an increase above a critical surfactant concentration. The dispersions were stable at low levels of C 12E 6 concentrations because of electrostatic repulsions as deduced from the zeta potentials of silica that were on the order of about -30 to -65 mV in monoethylene glycol (MEG). Instability on further addition of C 12E 6 to the silica particles, a phenomenon normally obtained with high-molecular-weight polymers, was observed in MEG. Viscoelatic measurements of silica in monoethylene glycol at various surfactant concentrations showed a predominantly viscous response at low frequency and a predominantly elastic response at high frequencies, indicative of weak flocculation. Instability is explained in terms of hydrophobic and bridging interactions. Restabilization observed at high surfactant concentration was due to the steric repulsion of ethoxy groups of micellar aggregates adsorbed on silica particles. The study also revealed that the presence of trace water introduced charge repulsion that moderated rheological measurements in glycol media and introduced the charge reversal of silica particles in dodecane.  相似文献   

2.
The influence of ionic environment on the rheological properties of aqueous cetyltrimethylammonium p-toluene sulfonate (CTAT) solutions has been studied under three different flow fields: simple shear, opposed-jets flow and porous media flow. Emphasis was placed in the experiments on a range of CTAT concentration in which wormlike micelles were formed. It is known that these solutions exhibit shear thickening in the semi-dilute regime, which has been explained in terms of the formation of shear-induced, cooperative structures involving wormlike micelles. In simple shear flow, the zero shear viscosity exhibits first an increase with salt addition followed by a decrease, while the critical shear rate for shear thickening increases sharply at low salt contents and tends to saturate at relatively high ionic strengths. The results are explained in terms of a competition between micellar growth induced by salt addition and changes in micellar flexibility caused by ionic screening effects. Dynamic light scattering results indicate that micelles grow rapidly upon salt addition but eventually achieve a constant size under static conditions. These observations suggest that the wormlike micelles continuously grow with salt addition, but, as they become more flexible due to electrostatic screening, the wormlike coils tend to adopt a more compact conformation. The trends observed in the apparent viscosities measured in porous media flows seem to confirm these hypotheses-but viscosity increases in the shear thickening region-and are magnified by micelle deformation induced by the elongational nature of the local flow in the pores. In opposed-jets flow, the solutions have a behavior that is close to Newtonian, which suggests that the range of strain rates employed makes the flow strong enough to destroy or prevent the formation of cooperative micellar structures.  相似文献   

3.
Shear-induced thickening/thinning phenomena of aqueous rodlike micellar solutions of cetyltrimethylammonium bromide (CTAB) and sodium p-toluene sulfonate (NapTS) were investigated by means of simultaneous measurements of rheology and small-angle neutron scattering (SANS), the so-called Rheo-SANS. The aqueous CTAB/NapTS solutions were classified into five different categories dependent on their flow behavior and micellar structure. By increasing salt concentration and/or shear rates, the micelles underwent morphological transition from (i) spherical or short rodlike micelles to (ii) long rodlike micelles without entanglements, followed by (iii) those with entanglements. These transitions were recognized as changes in flow behavior from Newtonian to shear-thickening and shear-thinning flow, respectively. In the latter two cases, anisotropic SANS patterns appeared around these critical shear rates. The physical meaning of the anisotropic SANS patterns accompanied by shear-thickening flow behavior is discussed in conjunction with other shear-thickening systems.  相似文献   

4.
The structural and dynamic properties of low ionic strength micellar solutions of the cationic surfactant perfluorooctylbutane trimethylammonium bromide have been investigated by cryo-TEM, small-angle neutron scattering, small-angle X-ray scattering, T-jump and rheological experiments. The surfactant molecules self-assemble into narrow ribbons with average dimensions on the order of 4 nm x 3 nm, either under salt-free conditions or in the presence of up to 30 mM KBr or NaF. Cryo-TEM also reveals in the salt-free systems the presence of networks of multiconnected micelles. Rheological experiments showed that these surfactant systems exhibit a strong shear-thickening effect even in the presence of up to 30 mM KBr. The T-jump response of the micellar solutions was found to be multiexponential. This observation rules out the presence of only linear micelles with an exponential length distribution and suggests more complex topologies of the micellar aggregates. The relaxation time associated with the predominant process in the T-jump relaxation is strongly correlated to the critical shear rate beyond which shear thickening occurs, thus indicating that this critical shear rate is controlled by the micellar kinetics.  相似文献   

5.
Constant shear and shear dependent viscosity measurements are reported in aqueous systems of co- and terpolymers of acrylamide (AM), N-n-alkylacrylamide (C10, C12, and C14 alkyl groups), and acrylic acid (AA) with added anionic surfactant sodium dodecyl sulfate (SDS). The results are presented as three-dimensional plots of viscosity vs surfactant concentration and pH at constant shear rate or viscosity vs shear rate and surfactant concentration at constant pH. For terpolymers incorporating AA, a strong viscosity maximum is observed at intermediate pH values (pH 4-6) where the AA groups are partially ionized and at SDS concentrations close to the critical micelle concentration. At high pH, all AA incorporating terpolymer solutions with SDS are strongly shear thinning, but at pH 3-4 the systems of terpolymers with SDS are strongly shear thickening at low shear, followed by a shear-thinning region at high shear. These results are explained in terms of surfactant-mediated network formation with polymer coil expansion and hydrogen bonding between partially ionized AA groups as additional factors.  相似文献   

6.
Shear thickening and strain hardening behavior of hydrophobically modified hydroxyethyl cellulose (HMHEC) aqueous solutions was experimentally examined. We focused on the effects of polymer concentration, temperature, and addition of nonionic surfactant. It is found that HMHEC shows stronger shear thickening at intermediate shear rates in a certain concentration range. In this range, the zero-shear viscosity scales with polymer concentration as eta(0) approximately c(5.7), showing a stronger concentration dependence than for more concentrated solutions. The critical shear stress for complete disruption of the transient network follows tau(c) approximately c(1.62) in the concentrated regime. Dynamic tests of the transient network on addition of surfactants show that the enhanced zero-shear viscosity is due to an increase in network junction strength, rather than their number, which in fact decreases. The reduction in the junction number could partly explain the weak variation of strain hardening extent for low surfactant concentrations, because of longer and looser bridging chain segments, and hence lesser nonlinear chain stretching.  相似文献   

7.
Interactions between a high molecular weight poly(ethylene oxide) (PEO) and the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions were investigated by shear and extensional rheometry. Results for mixtures between PEO and sodium dodecyl sulfate (SDS) are also presented for comparison purposes. Addition of anionic surfactants to PEO solutions above the critical aggregation concentration (CAC), at which micellar aggregates attach to the polymer chain, results in an increase in shear viscosity due to PEO coil expansion, and a strengthening of interchain interactions. In extensional flows, these interactions result in a decrease of the critical shear rate for the onset of the characteristic extension thickening of the PEO solutions that is due to transient entanglements of polymer molecules. The relaxation times associated with these transient entanglements are not directly proportional to the shear viscosity of the solutions, but rather vary more rapidly with surfactant concentration. In the presence of an electrolyte, coil contraction results in lower shear viscosities and a decrease in the extension thickening effects at surfactant concentrations just beyond the CAC. The relaxation times associated with transient entanglement reach a minimum at the same surfactant concentration as the shear viscosity, which indicates that coil contraction is responsible for the observed effects in both types of flow. However, the increase in extensional-flow entanglement relaxation times is much more abrupt than the decrease in shear viscosity. All these results point to a greater sensitivity of extensional flows on the molecular conformation of PEO/surfactant complexes.  相似文献   

8.
M Ju  Z El Rassi 《Electrophoresis》1999,20(13):2766-2771
Chiral cyclohexyl-pentyl-beta-D-maltoside (CYMAL-5) surfactant was evaluated in the enantioseparation of charged racemic species by capillary electrophoresis. CYMAL-5 is a glycosidic surfactant (GS) with a chiral maltose polar head group and a cyclohexyl-pentyl hydrophobic tail. At concentrations above its critical micellar concentration (CMC), CYMAL-5 produces neutral micelles in aqueous media. The neutral micelles migrate at the velocity of the electroosmotic flow (EOF). As expected, the CYMAL-5 system was only useful for the enantioseparation of charged chiral solutes. The enantioresolution of the CYMAL-5 can be manipulated over a wide range of electrolyte composition, e.g., pH, ionic strength and surfactant concentration. In the presence of EOF, and in all cases, there is an optimum surfactant concentration for maximum enantioresolution, which is located at low surfactant concentration for strongly hydrophobic solutes and at high surfactant concentration for relatively hydrophilic solutes. The presence of an optimum surfactant concentration for maximum enantioresolution is attributed to the EOF. At low pH values where the EOF is negligible, enantioresolution increased with increasing surfactant concentration in the useful concentration range in a way similar to chromatography.  相似文献   

9.
Rheological responses of hydrophobic fumed silica powders, whose surface silanol groups were modified by hexadecane, suspended in 1,4-dioxane at lower silica concentrations than 6.8 vol% have been investigated as a function of the silica concentration. Transient shear stress behavior before attaining the steady-state shear stress could be classified into three regimes as follows, irrespective of the silica concentration: at the lower shear rates than ca. 0.3 s?1 a stress overshoot was observed, at the shear rate ranges from 0.3 to 30 s?1 sustained oscillations in shear stresses were exhibited and these oscillations were first observed for the suspensions at the low particle concentrations, and beyond the shear rate of 30 s?1 a sigmoid decrease of the shear stress with increasing time, that is, structural breakdown, was observed. At the steady state the silica suspensions showed shear thickening. Small angle neutron scattering (SANS) measurements of the silica suspension under shear flow provided that changes in the SANS intensities were well correlated with the shear thickening behavior. However, shear thinning behavior at higher shear rates did not cause any changes in the SANS intensities.  相似文献   

10.
The rheology of monodisperse polystyrene latex particles of two different particle radii (26 and 67 nm) has been studied with a range of concentrations of the polyampholyte gelatin. Gelatin contributes to the rheology by adsorption to the particles and by thickening the continuous phase. High viscosities and strong shear thinning are measured for low volume fractions of latex. A procedure is presented to deconvolute the effects of free and bound gelatin by applying simple hard-sphere models. This procedure allows us to estimate the effective size of the gelatin-covered particles as well as the continuous-phase gelatin concentration and viscosity. The layer thicknesses from rheology agree well with those from PCS. The effect of varying particle volume fraction, ionic strength, pH and gelatin and surfactant concentration on the rheology of these suspensions is presented. For the smaller latex, the adsorbed layer occupies a greater fraction of the effective volume. Increasing free polymer concentration reduces the adsorbed-layer thickness. The reduced critical shear stress increases with the suspension viscosity for suspensions of the 26 nm latex but is constant for the 67 nm latex. At very high shear (>2000 s−1), the suspensions show excess shear thinning over that expected from a hard-sphere model. This excess thinning is attributed to deformation of the adsorbed gelatin layer under high shear stress and interpreted in terms of an empirical interparticle potential.  相似文献   

11.
The phase and rheological behaviors of the polymerizable surfactant, cetyltrimethylammonium benzoate (CTAVB), and water as a function of surfactant concentration and temperature are investigated here. The critical micelle concentration (cmc) and the (cmc(2)), as well as the Krafft temperature (T(K)), are reported. A large highly viscous micellar solution region and hexagonal- and lamellar-phase regions were identified. The micellar solutions exhibit shear thickening in the dilute regime, below the overlapping or entanglement concentration. At higher concentrations, wormlike micelles form and the solutions show strong viscoelasticity and Maxwell behavior in the linear regime and shear banding flow in the nonlinear regime. The linear viscoelastic regime is analyzed with the Granek-Cates model, showing that the relaxation is controlled by the kinetics of reformation and scission of the micelles. The steady and unsteady responses in the nonlinear regime are compared with the predictions of the Bautista-Manero-Puig (BMP) model. Model predictions follow the experimental data closely.  相似文献   

12.
Small micellar casein particles, so-called submicelles, were obtained by removing colloidal calcium phosphate from native casein by adding sodium polyphosphate. Aqueous submicelle suspensions were characterized using light scattering and rheology as a function of concentration and temperature. The casein submicelles behave like soft spheres that jam at a critical concentration (C(c)) of about 100 g L(-1). The viscosity does not diverge at C(c), but increases sharply, similarly to that of multiarm star polymers. C(c) increases weakly with increasing temperature, which leads to a strong decrease of the viscosity close to and above C(c). Concentrated submicelle suspensions show strong shear-thinning above a critical shear rate and the shear stress becomes independent of the shear rate. The critical shear rates at different temperatures and concentrations are inversely proportional to the zero-shear viscosity. At much higher shear rates, the shear stress fluctuates strongly in time indicating inhomogeneous flow. The frequency dependence of casein submicelle suspensions is characterized by elastic behavior at high frequencies (concentrations) and viscous behavior at low frequencies (concentrations).  相似文献   

13.
The rheology of cellulose microfibril suspensions from TEMPO-oxidized pulp was investigated. The suspension showed a pseudo-plastic and thixotropic behavior, slowly evolving with time under a given shear rate. The viscosity was proportional to the concentration up to the critical concentration of 0.23%. Above it, the viscosity followed a power law with exponents from 2 to 6 depending on the shear rate, and the system showed shear thinning behavior and behaved gel-like. Below this concentration, the system was more Newtonian. Birefringence measurement of 0.44% and 0.78% suspension showed that microfibrils alignment saturated at a small shear rate with a Herman’s orientation parameter below 0.65 probably due to the interconnection of microfibrils.  相似文献   

14.
The self-assembly in aqueous solution of the acidic (AS) and lactonic (LS) forms of the sophorolipid biosurfactant, their mixtures, and their mixtures with anionic surfactant sodium dodecyl benzene sulfonate, LAS, has been studied using predominantly small-angle neutron scattering, SANS, at relatively low surfactant concentrations of <30 mM. The more hydrophobic lactonic sophorolipid forms small unilamellar vesicles at low surfactant concentrations, in the concentration range of 0.2 to 3 mM, and transforms via a larger unilamellar vesicle structure at 7 mM to a disordered dilute phase of tubules at higher concentrations, 10 to 30 mM. In marked contrast, the acidic sophorolipid is predominantly in the form of small globular micelles in the concentration range of 0.5 to 30 mM, with a lower concentration of larger, more planar aggregates (lamellar or vesicular) in coexistence. In mixtures of AS and LS, over the same concentration range, the micellar structure associated with the AS sophorolipid dominates the mixed-phase behavior. In mixtures of anionic surfactant LAS with the AS sophorolipid, the globular micellar structure dominates over the entire composition and concentration range studied. In contrast, mixtures of LAS with the LS sophorolipid exhibit a rich evolution in phase behavior with solution composition and concentration. At low surfactant concentrations, the small unilamellar vesicle structure present for LS-rich solution compositions evolves into a globular micelle structure as the solution becomes richer in LAS. At higher surfactant concentrations, the disordered lamellar structure present for LS-rich compositions transforms to small vesicle/lamellar coexistence, to lamellar/micellar coexistence, to micellar/lamellar coexistence, and ultimately to a pure micellar phase as the solution becomes richer in LAS. The AS sophorolipid surfactant exhibits self-assembly properties similar to those of most other weakly ionic or nonionic surfactants that have relatively large headgroups. However, the more hydrophobic nature of the lactonic sophorolipid results in a more complex and unusual evolution in phase behavior with concentration and with concentration and composition when mixed with anionic surfactant LAS.  相似文献   

15.
Here, we review two recent theoretical models in the field of ionic surfactant micelles and discuss the comparison of their predictions with experimental data. The first approach is based on the analysis of the stepwise thinning (stratification) of liquid films formed from micellar solutions. From the experimental step-wise dependence of the film thickness on time, it is possible to determine the micelle aggregation number and charge. The second approach is based on a complete system of equations (a generalized phase separation model), which describes the chemical and mechanical equilibrium of ionic micelles, including the effects of electrostatic and non-electrostatic interactions, and counterion binding. The parameters of this model can be determined by fitting a given set of experimental data, for example, the dependence of the critical micellization concentration on the salt concentration. The model is generalized to mixed solutions of ionic and nonionic surfactants. It quantitatively describes the dependencies of the critical micellization concentration on the composition of the surfactant mixture and on the electrolyte concentration, and predicts the concentrations of the monomers that are in equilibrium with the micelles, as well as the solution’s electrolytic conductivity; the micelle composition, aggregation number, ionization degree and surface electric potential. These predictions are in very good agreement with experimental data, including data from stratifying films. The model can find applications for the analysis and quantitative interpretation of the properties of various micellar solutions of ionic surfactants and mixed solutions of ionic and nonionic surfactants.  相似文献   

16.
In this article, we consider the effects of sodium salicylate on the microstructure evolution and rheological responses of an aqueous cetyltrimethylammonium bromide (CTAB) solution. The experimental runs covered CTAB solutions ranging from dilute to semidilute, which were far above its critical micelle concentration. Sodium salicylate (NaSal) was used as a structure-forming agent with the molar ratio of NaSal to CTAB ranging from 0.1 to 10.0. The experimental results showed that the rheological responses of the surfactant solution were influenced strongly by both the CTAB concentration and the molar ratio. At low molar ratios, below 0.3, the surfactant solutions behaved like a Newtonian fluid. However, as the molar ratio increased, the deviation from Newtonian behavior became pronounced. Specifically, for 0.05 M CTAB solutions with molar ratios ranging from 1.0 to 5.0, an apparent yield stress developed at low shear rates and a stress plateau was displayed at intermediate shear rates. When the shear rate exceeded a certain threshold value, the shear stress increased, again passing over the plateau value. In addition, viscoelastic response and relaxation behavior were observed. The relaxation behavior after the cessation of flow was strongly dependent on the molar ratio, which was also confirmed by rheo-optical observations. The optical anisotropy measured by rheo-optical methods was closely related to flow-induced stretching and alignment of the wormy micelles and was consistent with the rheological responses. Copyright 2000 Academic Press.  相似文献   

17.
Dilution induced changes in the microstructure and rheological behavior of micelles formed by a cationic surfactant-anionic hydrotrope mixture has been investigated in the hydrotrope-rich region. The surfactant used is cetyltrimethylammonium bromide (CTAB) and the hydrotropic salt is sodium 3-hydroxy naphthalene 2-carboxylate (SHNC). The concentration of the mixture is varied from 0.5% to 10.0% w/w (φ=0.005-0.100) at a fixed weight ratio of hydrotrope to surfactant (85:15). Rheological studies indicate Newtonian flow behavior at low and high volume fractions (0.005 and 0.100) while a shear thinning behavior is observed at intermediate volume fractions. The zero-shear viscosity η(0) also passes through a maximum upon changes in the concentration. The most striking feature in our study is that a low viscosity Newtonian fluid transforms to a viscoelastic fluid, upon dilution, and then again to a Newtonain fluid. Small angle neutron scattering studies of 10.0% micellar solution show the presence of rod-like aggregates. Upon dilution, the scattering intensity per unit concentration shows an increase in the low q-region. The nature of pair distance distribution function and subsequent model fitting indicates a transition from rod-like micelles to unilamellar vesicles upon dilution. This behavior is explained in terms of the volume fraction dependant solubilization of hydrotropes in the rod-like micelles and consequent changes in the composition of the mixed micelles.  相似文献   

18.
This work investigates the elongational flow of aqueous solutions of mixtures of a high-molecular-weight poly(ethylene oxide) (PEO) and sodium dodecyl sulfate (SDS). The formation of micellar aggregates of SDS along the PEO chain results in an increase in the strength of the extension thickening of the PEO solutions. This is especially pronounced under conditions in which the PEO molecules form transient entanglements in the flow field. The minimum PEO concentration required to form intermolecular entanglements is substantially reduced in the presence of micellar aggregates. This effect becomes quantitatively less important in solutions with NaCl, which suggests PEO coil contraction due to electrostatic screening of micellar aggregates. However, once extension thickening starts in the presence of NaCl, the growth of pressure drop is more abrupt than without salt, which suggests stronger interactions between PEO coils with attached aggregates. The critical aggregation concentrations of PEO/SDS and PEO/SDS/NaCl solutions agree with those reported in the literature, which were obtained by means of different experimental techniques. However, the saturation of the surfactant effect is attained at lower surfactant concentrations than the polymer saturation point previously reported. This might reflect a low sensitivity of the extension thickening effect to the amount of surfactant bound to the polymerchain as the saturation point is approached. Copyright 2001 Academic Press.  相似文献   

19.
The interactions of oppositely charged polyelectrolyte and surfactant (anionic polyacrylamide AD37 and dodecylpyridinium chloride DPC, respectively) in aqueous solution were studied at 25 °C by measurement of viscosity and conductivity. The system was investigated in aqueous medium in the absence and presence of NaCl. The AD37 interacts strongly with the DPC surfactant of the opposite charge. The interactions are electrostatic and hydrophobic. Thus, they are manifested in the formation of hydrophobic aggregates. The critical aggregation concentration (CAC) is much lower than the critical micellar concentration (CMC) of the surfactant alone. However, the value of the saturation concentration X 2 is higher. The ionic strength of the medium after addition of salt explains an important part of these interactions. In fact, the electrolyte charge affects the CMC and the CAC values.  相似文献   

20.
Electromigration experiments of ionic surfactants were performed by using a capillary tube isotachophoretic apparatus. The zone of the migrated surfactant was collected after separation, and the surfactant concentration of the migrated zone was determined by HPLC analysis. The surfactant concentration of the migrated zone was increased with an increase in electrolyte concentration, and was in accord with the prediction of the Kohlrausch equation. When the electrolyte concentration further increased, the surfactant molecules began to migrate as a micellar state. Moreover, the mixed systems of ionic-non ionic and ionic-ionic surfactants were also examined and revealed the migration as mixed micelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号