首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated the capability of femtosecond stimulated Raman scattering (FSRS) data to measure the temperature (T) of condensed matter at the molecular vibrational level. [Phys. Rev. Lett. 2011, 107, 43001] In this paper, we expand the theory for the FSRS temperature dependence by considering the effects of an isolated change of T as well as a coupled change of T and chemical concentration. We point out that the origin of the temperature sensitivity of the Stokes to anti‐Stokes ratio of FSRS lies in the exponential nonlinearity of the gain and loss. We establish that FSRS of two Raman modes can be used to simultaneously determine the vibrational temperature and the change in concentration of the species contributing to those two modes. Single‐shot experimental results using FSRS are presented to demonstrate over four orders of magnitude higher efficiency than spontaneous Raman in small volume samples with picosecond resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Resonance enhancement has been increasingly employed in the emergent femtosecond stimulated Raman spectroscopy (FSRS) to selectively monitor molecular structure and dynamics with improved spectral and temporal resolutions and signal-to-noise ratios. Such joint efforts by the technique-and application-oriented scientists and engineers have laid the foundation for exploiting the tunable FSRS methodology to investigate a great variety of photosensitive systems and elucidate the underlying functional mechanisms on molecular time scales. During spectral analysis, peak line shapes remain a major concern with an intricate dependence on resonance conditions. Here, we present a comprehensive study of line shapes by tuning the Raman pump wavelength from red to blue side of the ground-state absorption band of the fluorescent dye rhodamine 6G in solution. Distinct line shape patterns in Stokes and anti-Stokes FSRS as well as from the low to high-frequency modes highlight the competition between multiple third-order and higher-order nonlinear pathways, governed by different resonance conditions achieved by Raman pump and probe pulses. In particular, the resonance condition of probe wavelength is revealed to play an important role in generating circular line shape changes through oppositely phased dispersion via hot luminescence (HL) pathways. Meanwhile, on-resonance conditions of the Raman pump could promote excited-state vibrational modes which are broadened and red-shifted from the coincident ground-state vibrational modes, posing challenges for spectral analysis. Certain strategies in tuning the Raman pump and probe to characteristic regions across an electronic transition band are discussed to improve the FSRS usability and versatility as a powerful structural dynamics toolset to advance chemical, physical, materials, and biological sciences.  相似文献   

3.
Femtosecond stimulated Raman spectroscopy (FSRS) has emerged as a powerful new technique that is capable of obtaining resonance Raman spectra of fluorescent species and transient photochemical intermediates. Unlike related transient infrared absorption techniques, the FSRS signal is quite sensitive to the laser power utilized in the vibrational probing event. In particular, FSRS spectra are highly sensitive to the intensity of the picosecond Raman‐pump pulse. We have measured the power dependence of the FSRS signal using pulse energies from ~10−9 to ~10−5 J and molecules with a range of molar absorptivities at the Raman‐pump wavelength of 400 nm, including β‐carotene (ε400 = 58 300 M−1 cm−1), para‐nitroaniline (17 800 M−1 cm−1), nitronaphthalene (247 M−1 cm−1) and ferrocene (57 M−1 cm−1). We show that for strongly absorbing molecular systems, such as β‐carotene and para‐nitroaniline, the ground‐state (GS) FSRS signal actually decreases with increasing pump power at pump fluences above ~10−2 J cm−2, due to depletion of the GS population. However, for weakly absorbing species like nitronaphthalene and ferrocene, the signal increases linearly with increasing pump fluence until ~0.5 J cm−2, at which point two‐photon absorption by the solute induces nonlinear absorption of the pump pulse and attenuation of the FSRS signal. The data are quantitatively simulated with a photophysical kinetic model, and the results are analyzed to provide simple guidelines for acceptable Raman‐pump powers in resonance FSRS experiments. The acceptable Raman‐pump power is proportional to the focused beam area and depends inversely on the sample's molar absorptivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
采用固相烧结法制备了六方晶型结构的MgTiO3粉体. 经高温原位X射线衍射分析(293-1473 K)进行了表征与确认,获得了晶胞参数及其随温度的变化,测量了高温原位拉曼光谱(273-1623 K),并运用第一性原理理论计算方法对应核实了拉曼谱峰的归属. 结果表明,随着温度升高,MgTiO3晶面间距和晶格常数增大,从而反映对于拉曼光谱较为敏感的键长和键角的变化;温致拉曼位移可以反映Ti-O,Mg-O等键长以及Ti-O-Ti,Ti-O-Mg与Mg-O-Mg等键角随温度的细微变化,相关关系则独立于温度,有效提升了原位拉曼光谱微探针诊断技术的分析能力;拉曼谱峰随温度升高而展宽,表明原子瞬间运动振幅加剧,弥散性增加,稳定性有所下降,但仍维持六方晶型. 关键词: 3')" href="#">MgTiO3 微结构 拉曼光谱 高温  相似文献   

5.
搭建了飞秒时间分辨受激拉曼光谱(FSRS)装置,并用于研究全反式β-胡萝卜素单重电子激发态超快内转换和振动弛豫过程.基于三脉冲“抽运-探测”方案搭建的时间分辨受激拉曼光谱装置同时实现了150fs的时间分辨率和23.7cm-1的光谱分辨率,光谱检测范围为300—4000cm-1.对全反式β-胡萝卜素电子激发态的飞秒时间分辨拉曼光谱研究表明,β-胡萝卜素被激发到S2态后,经由寿命约为0.3ps的中间态SX态实 关键词: 飞秒时间分辨拉曼光谱 β-胡萝卜素 激发态内转换 振动弛豫  相似文献   

6.
The theory of transient forward stimulated Raman scattering (FSRS) of rapidly amplified short laser pulses is put forth to complement the classical theory for FSRS of stationary pulses. Quantitative conditions for FSRS suppression are identified. In particular, it is shown quantitatively how the limitation imposed by pumped pulse FSRS on the output laser intensity in plasma-based ultrapowerful backward Raman amplifiers can be overcome through a selective detuning of the Stokes resonance.  相似文献   

7.
J Shi  W Chen  X Mo  J Liu  X He  K Yang 《Optics letters》2012,37(14):2988-2990
The utilization of a simple focused optical cell to bring to light the competition between wideband stimulated Brillouin scattering (WSBS) and forward stimulated Raman scattering (FSRS) is investigated experimentally. A pulsed, wide bandwidth second-harmonic Nd:YAG laser is used as the pump source. We found that, the competition between WSBS and FSRS is an alternate process, which one dominated depends on the linewidth and energy of the pump laser, focal length, and optical breakdown.  相似文献   

8.
We report on the generation of pure rotational stimulated Raman scattering in a hydrogen gas hollow-core photonic crystal fiber. Using the special properties of this low-loss fiber, the normally dominant vibrational stimulated Raman scattering is suppressed, permitting pure conversion to the rotational Stokes frequency in a single-pass configuration pumped by a microchip laser. We report 92% quantum conversion efficiency (40 nJ pulses in 2.9 m fiber) and threshold energies (3 nJ in 35 m) more than 1 x 10(6) times lower than previously reported. The control of the output spectral components by varying only the pump polarization is also shown. The results point to a new generation of highly engineerable and compact laser sources.  相似文献   

9.
Advances in the field of Femtosecond Stimulated Raman Spectroscopy (FSRS), a new time‐resolved structural technique that provides complete vibrational spectra on the ultrafast timescale, are reviewed. When coupled with a femtosecond optical trigger, the time evolution of a reacting species can be monitored with unprecedented <25 femtosecond temporal and 5 cm‐1 spectral resolution. New technological and theoretical advances including the development of tunable FSRS and a background‐free FSRS format are discussed. The most recent experimental studies focus on ultrafast reaction dynamics in electronically excited states: isomerization in cyanobacterial phytochrome, ultrafast spin flipping in a solar cell sensitizer, and excited state proton transfer in green fluorescent protein. The use of FSRS to directly map multidimensional reactive potential energy surfaces and to probe the mechanism of reactive internal conversion is prospectively discussed.  相似文献   

10.
何兴道  徐进军  史久林  陈蔚  莫小凤  刘娟 《光学学报》2012,32(6):619005-162
实验上分析了在多模激光抽运的条件下,水中宽带受激布里渊散射(WSBS)及前向受激拉曼散射(FSRS)产生的物理机制及二者之间能量变化的关系。实验结果表明,在多模激光抽运过程中,WSBS能量与FSRS能量处于不断变化的状态。聚焦长度较短或抽运光能量相对较低时,WSBS在散射过程中占据主导地位;随着聚焦长度和抽运光能量的增加以及光学击穿的产生,FSRS在散射过程中逐渐占据优势。  相似文献   

11.
The design of a femtosecond stimulated Raman spectrograph (FSRS) optimized for measurements in the near UV is presented. It features a 387.5 nm Raman pump pulse causing a (pre-)resonance enhancement for molecular absorbing in the UV. As many photoreactive molecules absorb there, the set-up is particularly suited to study photochemical reactions. The 387.5 nm pulses are generated by frequency adding two femtosecond laser pulses with linear chirps, equal in magnitude but opposite in sign. This results in intense and spectrally narrow (∼10 cm-1) Raman pump pulses which allow recording of Raman spectra with a good spectral resolution. The power of the spectrograph to trace ultrafast photoreactions is illustrated by measurements on the photochemistry of o-nitrobenzaldehyde. PACS 33.20.Fb; 39.30.+w  相似文献   

12.
Asymmetry in the intensities between backward and forward stimulated Raman scattered radiations (BSRS and FSRS respectively) in acetone is investigated in the presence of a fluorescing impurity (rhodamine 6G). In the case of pure acetone above a threshold pump power, BSRS becomes more intense than FSRS. On the other hand intensity of BSRS decreases with concentration of the fluorophore in solution, while that of FSRS is found to increase. It is observed that absorption saturation also affects the asymmetry between FSRS and BSRS.  相似文献   

13.
多条转动拉曼谱线雷达测量对流层大气温度   总被引:2,自引:0,他引:2  
由于对流层大气中气溶胶的存在,传统的利用大气中瑞利散射和振动拉曼散射测量大气温度的方法具有一定的局限性,然而利用大气N2和O2分子的的转动拉曼信号获得大气温度信息的方法不受对流层大气中气溶胶的影响。因此利用N2和O2分子纯转动拉曼散射激光雷达开展了测量对流层下部温度分布的实验研究。现有的转动拉曼雷达系统基本上是通过获取单一的转动拉曼谱线来反演大气温度,这就导致了系统的信噪比低,不能很好的反演温度。作者在双光栅单色仪的基础上提出了一种新的雷达信号分光系统。这种新的分光系统的每条通道所获得的信号并不是单独的转动拉曼谱线,而是多条转动拉曼谱线之和,这样就能提高整个系统的信噪比。在较小的激光能量和小口径望远镜的情况下,利用这种方法,雷达系统可以在几公里内获得较好的信噪比。最后实验得到了对流层0.3~5 km高度内的大气温度分布, 它与球载无线电探空仪比较, 二者一致性较好。  相似文献   

14.
We demonstrate the acquisition of stimulated Raman scattering spectra with the use of a single femtosecond pulse. High-resolution vibrational spectra are obtained by shifting the phase of a narrow band of frequencies within the input pulse spectrum, using spectral shaping. The vibrational lines are resolved via amplitude features formed in the spectrum after interaction with the sample. Using this technique, low-frequency Raman lines (<100 cm?1) are observed on both the Stokes and anti-Stokes sides.  相似文献   

15.
Raman spectra of 3CHBT in unoriented form were recorded at 14 different temperature measurements in the range 25–55 °C, which covers the crystal → nematic (N) phase transition, and the Raman signatures of the phase transition were identified. The wavenumber shifts and linewidth changes of Raman marker bands with varying temperature were determined. The assignments of important vibrational modes of 3CHBT were also made using the experimentally observed Raman and infrared spectra, calculated wavenumbers, and potential energy distribution. The DFT calculations using the B3LYP method employing 6‐31G functional were performed for geometry optimization and vibrational spectra of monomer and dimer of 3CHBT. The analysis of the vibrational bands, especially the variation of their peak position as a function of temperature in two different spectral regions, 1150–1275 cm−1 and 1950–2300 cm−1, is discussed in detail. Both the linewidth and peak position of the ( C H ) in‐plane bending and ν(NCS) modes, which give Raman signatures of the crystal → N phase transition, are discussed in detail. The molecular dynamics of this transition has also been discussed. We propose the co‐existence of two types of dimers, one in parallel and the other in antiparallel arrangement, while going to the nematic phase. The structure of the nematic phase in bulk has also been proposed in terms of these dimers. The red shift of the ν(NCS) band and blue shift of almost all other ring modes show increased intermolecular interaction between the aromatic rings and decreased intermolecular interaction between two  NCS groups in the nematic phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
磷酸钠结构的高温拉曼光谱研究   总被引:2,自引:1,他引:1  
用高温拉曼光谱仪测定了固态和熔融态磷酸钠(Na3PO4)晶体的光谱,分析了磷酸钠晶体的结构及其随温度的变化。通过对从常温谱到高温谱的解析,得出主峰波数随温度的变化及主峰半高宽的变化,可以观察到在600 K附近及1773 K有两个相变产生。此外,磷酸钠晶体的相关高温DSC检测分析,也和拉曼谱中发现的两个相变符合。量子化学理论计算同时对该体系的P-O键振动和平均键长进行了模拟,随着键长的增加,对应的振动频率会降低。还确认了磷酸钠Raman光谱中各个峰的归属,938 cm-1波数处的峰属于(PO4)3-中P-O键的对称伸缩振动,是Na3PO4的特征峰,425及580 cm-1处峰属于磷氧四面体的弯曲振动。  相似文献   

17.
We present experimental Raman scattering results on single‐crystal silicon monoarsenide (SiAs). Based on a comparison between Raman measurements and first‐principles density functional theory calculations, we found evidence that SiAs will occur in a monoclinic crystal structure rather than an orthorhombic one as has been discussed in the literature. Further, we provide a detailed discussion of the vibrational properties of the monoclinic structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The phonons and the crystal structure of the complex hydride LiBH4 are studied on single crystals using micro‐Raman spectroscopy. The symmetry of the modes is determined by polarization‐dependent measurements at liquid helium temperature, allowing a better comparison and a more reliable assignment to the computed phonon wavenumbers. This has led to the revision of some former assignments made from Raman measurements on polycrystalline samples. In addition, a higher integration time allowed the detection of very weak lines, so that 35 out of 36 predicted Raman lines have been identified. We have also performed explorative Raman measurements on Mg(BH4)2 powders. In contrast to LiBH4, the very poor crystallinity of this material inhibits the exploitation of the full potential of Raman spectroscopy. Only broad lines are observed, which we compare to phonon wavenumbers calculated for various possible structures using density functional theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Time-domain spectroscopy of coherent optical phonons in bismuth germinate (Bi4Ge3O12) is presented. Utilizing both impulsive stimulated Raman scattering and time-domain terahertz spectroscopy, more than 12 unique vibrational states ranging in frequency from 2 to 11 THz are identified, each with coherent lifetimes ranging from 1 to 20 ps. These modes are highly sensitive to crystal orientation and demonstrate frequency shifts on picosecond timescales consistent with an anharmonic lattice potential.  相似文献   

20.
The factor group symmetry analysis (FSA) method and position symmetry analysis (PSA) method are used to analyze the vibrational modes of calcite (CaCO3) crystal, respectively. With the activated results of infrared and Raman spectra presented, strong points of each method are concluded. The infrared spectra are studied by using dynamics calculations based on density-functional theory (DFT) with the supercell model of calcite crystal. The frequencies of 27 normal modes are achieved, which are consistent with that by the group symmetry analysis very well, and fit with the experimental results better than the lattice dynamical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号