首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First principles calculations have been performed to study the electronic structure and the ferromagnetic properties on the two chain compounds of [M(N3)2(HCOO)][(CH3)2NH2] (M=Fe and Co). The relative stability of the ground state, the density of states and the electronic band structure are examined. The results reveal that antiferromagnetism (AFM) state is the ground state and ferromagnetism (FM) state is the metastable one for both of them. The two compounds exhibit semiconductor character with small gap in the FM state, while metallic in the AFM state. In the FM state, the magnetic moments mainly arise from the Fe and Co ions with little contribution from the nearest-neighboring N and O atoms due to the hybridization between the Fe or Co 3d states and the nearest-neighboring N and O 2p states.  相似文献   

2.
We study the surface and bulk electronic structure of the room-temperature ferromagnet Co∶TiO(2) anatase films using soft- and hard-x-ray photoemission spectroscopy with probe sensitivities of ~1 and ~10 nm, respectively. We obtain direct evidence of metallic Ti(3+) states in the bulk, which get suppressed to give a surface semiconductor, thus indicating the difference in electronic structure between surface and bulk. X-ray absorption and resonant photoemission spectroscopy reveal Ti(3+) electrons at the Fermi level (E(F)) and high-spin Co(2+) electrons occurring away from E(F). The results show the importance of the charge neutrality condition: Co(2+)+V(O)(2-)+2Ti(4+)?Co(2+)+2Ti(3+) (V(O) is oxygen vacancy), which gives rise to the elusive Ti 3d carriers mediating ferromagnetism via the Co 3d-O 2p-Ti 3d exchange interaction pathway of the occupied orbitals.  相似文献   

3.
Single-crystal neutron diffraction studies on superconductors A(2)Fe(4)Se(5), where A=Rb, Cs, (Tl, Rb), and (Tl, K) (T(c) ~ 30 K), uncover the same Fe vacancy ordered crystal structure and the same block antiferromagnetic order as in K(2)Fe(4)Se(5). The Fe order-disorder transition occurs at T(S)=500-578 K, and the antiferromagnetic transition at T(N) = 471-559 K with an ordered magnetic moment ~3.3μ(B)/Fe at 10 K. Thus, all recently discovered A intercalated iron selenide superconductors share the common crystalline and magnetic structure, which are very different from previous families of Fe-based superconductors, and constitute a distinct new 245 family.  相似文献   

4.
本文利用粒子数守恒方法分析对力对希土区变形偶偶核的各种性质的影响,其中包括低内部激发态(E≤2MeV)的激发机构、有关的β衰变和奇偶质量差等。为进行这些分析,本文先确定希土变形核内的单粒子能级。分析表明:适当改变参数μ和к以后的Nilsson能极,在考虑对力影响后,能较好地解释奇A核的低内部激发谱的自旋和宇称,并能近似地解释其能级间隔。参数μ,к,和η是由奇A核的实验能谱来确定的。在希土转动区中,к~0.067—0.072,η~4—4.6.  相似文献   

5.
Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO(3) reveal a long-wavelength spin density wave generated by ~1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic regions of dimension 0.03 microns along [110], to several microns along [111], confirming a long-standing theoretical prediction. The average local magnetization is 0.06 μ(B)/Fe. Our results provide an indication of the intrinsic macroscopic magnetization to be expected in ferroelectric BiFeO(3) thin films under strain, where the magnetic cycloid is suppressed.  相似文献   

6.
The surface sensitivity of the spin-polarized photoemission experiment was exploited to study two-dimensional magnetism. The magnetization of thin films of Fe, Co, and V in the monolayer (ML) range, grown on Cu(001) and Ag(001) single crystals, was measured as a function of perpendicularly applied field and temperature. Bcc Fe films and fcc Fe and Co films exhibit ferromagnetism down to the single monolayer range, while no evidence for ferromagnetism is found for V on Ag(001). All Co films are magnetized in plane and have a Curie temperature far above room temperature. A thickness dependence of the anisotropy and Curie temperature is observed for the two phases of Fe. Remanent magnetization perpendicular to the surface is found at 30 K for fcc Fe films thicker than 2 ML and for bcc Fe between 3 and 4 ML. The magnetic effects caused by coating and by interdiffusion are discussed in the light of measurements of Cu/Fe/Cu sandwiches and of overlayers obtained by simultaneous evaporation of Fe and Cu. The fcc Fe films are shown to be suitable for thermomagnetic writing.  相似文献   

7.
We derive some rigorous results on the chiral phase transition in QCD and QCD-like theories with a large number of colors, N(c), based on the QCD inequalities and the large-N(c) orbifold equivalence. We show that critical phenomena and associated soft modes are forbidden in flavor-symmetric QCD at finite temperature T and finite but not so large quark chemical potential μ for any nonzero quark mass. In particular, the critical point in QCD at a finite baryon chemical potential μ(B)=N(c)μ is ruled out, if the coordinate (T, μ) is outside the pion condensed phase in the corresponding phase diagram of QCD at a finite isospin chemical potential μ(I)=2μ.  相似文献   

8.
The magnetism driven by cation defects in undoped CeO 2 bulk and thin films is studied by the density functional theory corrected for on-site Coulomb interactions (DFT+U) with U = 5 eV for the Ce4f states and U = 7 eV for the O2p states. It is found that the Ce vacancies can induce a magnetic moment of the ~ 4 μ B /supercell, which arises mainly from the 2p hole state of the nearest neighbouring O atom (~ 1 μ B on per oxygen) to the Ce vacancy. The effect of the methodology is investigated, indicating that U = 7 eV for the O2p state is necessary to obtain the localized O2p hole state in defective ceria with cation vacancies.  相似文献   

9.
Mössbauer studies of R2(Fe1?x?y Ni x Co y )17 showed that the transferred hyperfine field at Fe nuclei due to magnetic rare earth (R) atoms is about one Tesla. Magnetic moments of the R atoms were determined from magnetic measurements as μTb=8.52μB, μGd=6.22μB. The mixed substitution of Ni and Co for Fe leads to an increase of the ordering temperature. A slight preference occupancy for Fe was observed involving the dumbbell shaped f or c site. The substitution effects of Ni and Co on the hyperfine field of f or c site, the average hyperfine field and the average isomer shift were also discussed.  相似文献   

10.
We find the realization of large converse magnetoelectric (ME) effects at room temperature in a magnetoelectric hexaferrite Ba0.52Sr2.48Co2Fe24O41 single crystal, in which rapid change of electric polarization in low magnetic fields (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62μ(B)/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients.  相似文献   

11.
We investigated the magnetic nature of Fe(1/4)TaS2 using x-ray absorption spectroscopy, photoemission spectroscopy, and first principles band calculations. The results show a large unquenched orbital magnetic moment (~1.0 μ(B)/Fe) at intercalated Fe sites, resulting in a gigantic magnetic anisotropy (H(A)?60 T). The magnetic coupling is well understood in terms of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, suggesting a novel RKKY ferromagnet with Ising-type spin states. We also found that this indirect exchange coupling between the neighboring Fe spins is ferromagnetic and maximized at the Fe-Fe distance of 2×2 superstructure.  相似文献   

12.
Room-temperature ferromagnetism is observed in (110) oriented ZnO films made from targets containing 5 at. % of Sc, Ti, V, Fe, Co, or Ni, but not Cr, Mn, or Cu ions. There are large moments, 2.6 micro(B) and 0.5 micro(B)/dopant atom for Co- and Ti-containing oxides, respectively. There is also a moment of 0.3 micro(B)/Sc. Magnetization is very anisotropic, with variations of up to a factor of 3 depending on the orientation of the applied field relative to the substrate. Results are interpreted in terms of a spin-split donor impurity-band model, which can account for ferromagnetism in insulating or conducting high-k oxides with concentrations of magnetic ions that lie far below the percolation threshold. Magnetic moments are associated with two-electron defects in the films as well as unpaired electrons of the 3d ions.  相似文献   

13.
Fe-doped ZnO film has been grown by laser molecular beam epitaxy (L-MBE) and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), all of which reveal the high quality of the film. No secondary phase was detected. Resonant photoemission spectroscopy (RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band. A strong resonant effect at a photon energy of 710 eV is observed. Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~ 8 eV. There are no electronic states related to Fe near the Fermi level. Magnetic measurements reveal a typical superparamagnetic property at room temperature. The absence of electronic states related to Fe near the Fermi level and the high quality of the film, with few defects, provide little support to ferromagnetism.  相似文献   

14.
Using complementary experiments we show that the room temperature ferromagnetism observed in anatase Co:TiO(2) films is not carrier mediated, but coexists with the dielectric state. TEM and x-ray absorption spectroscopy reveal a solid solution of Co in anatase, where Co is not metallic but in the +2 state substituting for Ti. Measurements at 300 K yield a M(S) of 1.1 mu(B)/Co atom, while all films are highly insulating. The evidence of intrinsic ferromagnetism in the dielectric ground state of Co:TiO(2) leads to new considerations for the origin of ferromagnetism in transition metal doped oxides.  相似文献   

15.
Bi5Fe1-xCoxTi3O15(x = 0.0, 0.2, 0.4, 0.5, 0.6, and 0.8) multiferroic ceramics are synthesized in two steps using the solid state reaction technique. X-ray diffraction patterns show that the samples have four-layer Aurivillius phases. At room temperature (RT), the samples each present a remarkable coexistence of ferromagnetism (FM) and ferroelectricity (FE). The remnant polarization (2P r ) reaches its greatest value of 14 μC/cm 2 at x = 0.6. Remnant magnetization (2M r ) first increases and then decreases, and the greatest 2M r is 7.8 menu/g when x = 0.5. The magnetic properties for x = 0.4 are similar to those for x = 0.6, indicating that the magnetic properties originate mainly from the coupling between Fe 3+ and Co 3+ ions, rather than from their own magnetic moments.  相似文献   

16.
In this paper, we report theoretical investigations of structural, electronic and magnetic properties of ordered dilute ferromagnetic semiconductors Cd1−xFexS with x=0.25, 0.5 and 0.75 in zinc blende (B3) phase using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the density functional theory and the generalized gradient approximation. The analysis of band structures, density of states, total energy, exchange interactions and magnetic moments reveals that both the alloys may exhibit a half-metallic ferromagnetism character. The value of calculated magnetic moment per Fe impurity atom is found to be 4 μB. Moreover, we found that p-d hybridization reduces the local magnetic moment of Fe from its free space charge value of 4 μB and produces small local magnetic moments on Cd and S sites.  相似文献   

17.
An overview is provided on our recent work that applies 57Fe M?ssbauer spectroscopy to specific problems in nanomagnetism. 57Fe conversion electron M?ssbauer spectroscopy (CEMS) in conjunction with the 57Fe probe layer technique as well as 57Fe nuclear resonant scattering (NRS) were employed for the study of various nanoscale layered systems: (i) metastable fct-Fe; a strongly enhanced hyperfine magnetic field Bhf of ~39?T at 25?K was observed in ultrahigh vacuum (UHV) on uncoated three-monolayers thick epitaxial face-centered tetragonal (fct) 57Fe(110) ultrathin films grown by molecular-beam epitaxy (MBE) on vicinal Pd(110) substrates; this indicates the presence of enhanced Fe local moments, μFe, as predicted theoretically; (ii) Fe spin structure; by applying magnetic fields, the Fe spin structure during magnetization reversal in layered (Sm–Co)/Fe exchange spring magnets and in exchange-biased Fe/MnF2 bilayers was proven to be non-collinear and depth-dependent; (iii) ferromagnet/semiconductor interfaces for electrical spin injection; CEMS was used as a diagnostic tool for the investigation of magnetism at the buried interface of Fe electrical contacts on the clean surface of GaAs(001) and GaAs(001)-based spin light-emitting diodes (spin LED) with in-plane or out-of-plane Fe spin orientation; the measured rather large average hyperfine field of ~27?T at 295?K and the distribution of hyperfine magnetic fields, P(Bhf), provide evidence for the absence of magnetically “dead” layers and the existence of relatively large Fe moments (μFe ~ 1.8?μB) at the ferromagnet/semiconductor interface. - Finally, a short outlook is given for potential applications of M?ssbauer spectroscopy on topical subjects of nanomagnetism/spintronics.  相似文献   

18.
The structural, electronic and magnetic properties of Fe–Co alloy nanowires encapsulated inside zigzag (10,0) boron nitride nanotube (BNNT) are investigated by ab initio calculations. Similar to pristine nanotube, the opposite directional relaxations for the N atoms (move outwards) and B atoms (move inwards) from their initial positions are observed for outside BNNT although with the Fe–Co alloy nanowires inside, but the outward relaxations of the N atoms bonding to the Fe or Co atoms are smaller due to their attractions. The combining processes of Fe–Co/BNNT composites are endothermic when Co concentration x≤0.6 and exothermic x>0.6, and the most stable Fe–Co/BNNT composite is at Co concentration x=0.8. So the semiconducting (10,0) BNNT can be used to shield the Co-rich Fe–Co nanowires. The charges are transferred from Fe–Co nanowires to BNNT and the formed Co–N bonds have covalent bond as well as slight ionic bond characters. Although (10,0) BNNT is nonmagnetic and a decrease in the magnetic moment is found after Fe–Co nanowires are encapsulated inside (10,0) BNNT, the Fe–Co/BNNT composites still have large magnetic moment, reflecting they can be utilized in magnetic storage and ultra high-density magnetic recording devices.  相似文献   

19.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,结合广义梯度近似(GGA)研究了过渡族金属(Mn,Fe,Co,Cu)与N共掺杂ZnO的能带结构、电子态密度分布、差分电荷密度和光学性质.计算表明Mn,Fe,Co与N共掺ZnO的光学性质与Mn,Fe,Co单掺杂相近,但是过渡族金属与N共掺杂有利于获得p型ZnO. 关键词: ZnO 第一性原理 电子结构 光学性质  相似文献   

20.
The structural, valence of elements and magnetic characteristics of Ni-implanted Al0.5Ga0.5N films, deposited on Al2O3 substrates by metalorganic chemical vapor deposition (MOCVD), were reported. Ni ions were implanted into Al0.5Ga0.5N films by Metal Vapor Arc (MEVVA) sources under the energy of 100 keV for 3 h. The films were annealed at 900 K in the furnace for the transference of Ni ions from interstitial sites to substitutional sites in AlGaN and activating the Ni3+ ions. Characterizations were carried out in situ using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and Vibrating sample magnetometer (VSM), indicating that the films have wurtzite structure without forming a secondary phase after annealing. Ni ions were successfully implanted into substitutional sites of Al0.5Ga0.5N films and the chemical bonding states of Ni3+ is Ni–N. The apparent hysteresis loops prove the films exhibited ferromagnetism at 300 K. The room temperature (RT) Ms and Hc obtained were approximately 0.22 emu/g and 32.97 Oe, respectively. From the first-principles calculation, A total magnetic moment of 2.86 μB per supercell is calculated: the local magnetic moment of NiN4 tetrahedron, 2.38 μB, makes the primary contribution. The doped Ni atom hybridizes with its four nearby N atoms in NiN4 tetrahedron, then N atoms are spin polarized and couple with Ni atom with strong magnetization, which result in ferromagnetism. Therefore, the p-d exchange mechanism is responsible for ferromagnetism in Ni-doped AlGaN. It is expected that the room temperature ferromagnetic Ni-doped Al0.5Ga0.5N films can make it possible to the applications for the spin electric devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号